These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 23646541)
21. Centimeter-long Ta3N5 nanobelts: synthesis, electrical transport, and photoconductive properties. Wu XC; Tao YR; Li L; Bando Y; Golberg D Nanotechnology; 2013 May; 24(17):175701. PubMed ID: 23548821 [TBL] [Abstract][Full Text] [Related]
22. Effects of reduced chemical vapor deposition environment on growth and optical characteristics of TiO2 nanobelts. Hoa NT; Heo HH; Lim JK; Kim GM; Kim ET J Nanosci Nanotechnol; 2012 Feb; 12(2):1411-4. PubMed ID: 22629968 [TBL] [Abstract][Full Text] [Related]
23. V Sucharitakul S; Ye G; Lambrecht WRL; Bhandari C; Gross A; He R; Poelman H; Gao XPA ACS Appl Mater Interfaces; 2017 Jul; 9(28):23949-23956. PubMed ID: 28677951 [TBL] [Abstract][Full Text] [Related]
24. A facile hydrothermal synthesis route to single-crystalline lead iodide nanobelts and nanobelt bundles. Ma D; Zhang W; Zhang R; Zhang M; Xi G; Qian Y J Nanosci Nanotechnol; 2005 May; 5(5):810-3. PubMed ID: 16010944 [TBL] [Abstract][Full Text] [Related]
25. Heterogeneous TiO Kurttepeli M; Deng S; Mattelaer F; Cott DJ; Vereecken P; Dendooven J; Detavernier C; Bals S ACS Appl Mater Interfaces; 2017 Mar; 9(9):8055-8064. PubMed ID: 28199079 [TBL] [Abstract][Full Text] [Related]
27. Hydrogen-assisted synthesis and optical properties of single-crystalline Cd0.9Mn0.1S nanobelts. Li G; Jiang Y; Wang C; Shi J; Zhang Z J Nanosci Nanotechnol; 2008 Aug; 8(8):3883-8. PubMed ID: 19049145 [TBL] [Abstract][Full Text] [Related]
28. New chemical route for the synthesis of β-Na(0.33)V₂O₅ and its fully reversible Li intercalation. Kim JK; Senthilkumar B; Sahgong SH; Kim JH; Chi M; Kim Y ACS Appl Mater Interfaces; 2015 Apr; 7(12):7025-32. PubMed ID: 25768692 [TBL] [Abstract][Full Text] [Related]
29. The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates. Kuo CL; Huang MH Nanotechnology; 2008 Apr; 19(15):155604. PubMed ID: 21825618 [TBL] [Abstract][Full Text] [Related]
30. Growth of tin dioxide nanobelts via Au-catalytic VLS process. Fang Z; Tang K; Shen J; Lei S; Liu X; Yang Q J Nanosci Nanotechnol; 2007 Dec; 7(12):4567-70. PubMed ID: 18283845 [TBL] [Abstract][Full Text] [Related]
31. Nanobelt formation of magnesium hydroxide sulfate hydrate via a soft chemistry process. Zhou Z; Sun Q; Hu Z; Deng Y J Phys Chem B; 2006 Jul; 110(27):13387-92. PubMed ID: 16821859 [TBL] [Abstract][Full Text] [Related]
32. β-Sialon nanowires, nanobelts and hierarchical nanostructures: morphology control, growth mechanism and cathodoluminescence properties. Huang J; Huang Z; Liu Y; Fang M; Chen K; Huang Y; Huang S; Ji H; Yang J; Wu X; Zhang S Nanoscale; 2014 Jan; 6(1):424-32. PubMed ID: 24212249 [TBL] [Abstract][Full Text] [Related]
33. Flexible visible-light photodetectors with broad photoresponse based on ZrS3 nanobelt films. Tao YR; Wu XC; Xiong WW Small; 2014 Dec; 10(23):4905-11. PubMed ID: 25048818 [TBL] [Abstract][Full Text] [Related]
34. Catalyst-assisted vapor-liquid-solid growth of single-crystal Ga2O3 nanobelts. Zhang J; Jiang F; Yang Y; Li J J Phys Chem B; 2005 Jul; 109(27):13143-7. PubMed ID: 16852636 [TBL] [Abstract][Full Text] [Related]
36. In situ SEM study of lithium intercalation in individual V2O5 nanowires. Strelcov E; Cothren J; Leonard D; Borisevich AY; Kolmakov A Nanoscale; 2015 Feb; 7(7):3022-7. PubMed ID: 25600354 [TBL] [Abstract][Full Text] [Related]
37. Free-Standing InAs Nanobelts Driven by Polarity in MBE. Sun Q; Gao H; Zhang X; Yao X; Zheng K; Chen P; Lu W; Zou J ACS Appl Mater Interfaces; 2019 Nov; 11(47):44609-44616. PubMed ID: 31684720 [TBL] [Abstract][Full Text] [Related]
38. NbN and NbS2 nanobelt arrays: in-situ conversion preparation and field-emission performance. Tao Y; Gao Q; Wang X; Wu X; Mao C; Zhu J J Nanosci Nanotechnol; 2011 Apr; 11(4):3345-9. PubMed ID: 21776707 [TBL] [Abstract][Full Text] [Related]
39. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. Wang HG; Ma DL; Huang Y; Zhang XB Chemistry; 2012 Jul; 18(29):8987-93. PubMed ID: 22689094 [TBL] [Abstract][Full Text] [Related]
40. Epitaxial growth route to crystalline TiO2 nanobelts with optimizable electrochemical performance. Gao P; Bao D; Wang Y; Chen Y; Wang L; Yang S; Chen G; Li G; Sun Y; Qin W ACS Appl Mater Interfaces; 2013 Jan; 5(2):368-73. PubMed ID: 23265603 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]