These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23646563)

  • 41. Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well.
    Yang L; Motohisa J; Tomioka K; Takeda J; Fukui T; Geng MM; Jia LX; Zhang L; Liu YL
    Nanotechnology; 2008 Jul; 19(27):275304. PubMed ID: 21828700
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Correlating Photoluminescence and Structural Properties of Uncapped and GaAs-Capped Epitaxial InGaAs Quantum Dots.
    Dey AB; Sanyal MK; Farrer I; Perumal K; Ritchie DA; Li Q; Wu J; Dravid V
    Sci Rep; 2018 May; 8(1):7514. PubMed ID: 29760396
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of annealing on surface morphology and photoluminescence of self-assembled Ge and Si quantum dots.
    Samavati A; Othaman Z; Dabagh S; Ghoshal SK
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5266-71. PubMed ID: 24758014
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temperature-Dependent Exciton Dynamics in a Single GaAs Quantum Ring and a Quantum Dot.
    Kim H; Kim JS; Song JD
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889556
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of temperature-dependent photoluminescence in multi-quantum wells.
    Fang Y; Wang L; Sun Q; Lu T; Deng Z; Ma Z; Jiang Y; Jia H; Wang W; Zhou J; Chen H
    Sci Rep; 2015 Jul; 5():12718. PubMed ID: 26228734
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temperature Dependence of Carrier Extraction Processes in GaSb/AlGaAs Quantum Nanostructure Intermediate-Band Solar Cells.
    Shoji Y; Tamaki R; Okada Y
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33573008
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal stability of photoluminescence in Cu-doped Zn-In-S quantum dots for light-emitting diodes.
    Yuan X; Ma R; Hua J; Liu Y; Li J; Zhang W; Zhao J; Li H
    Phys Chem Chem Phys; 2016 Apr; 18(16):10976-82. PubMed ID: 27043791
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Formation and characterization of multilayer GeSi nanowires on miscut Si (001) substrates.
    Gong H; Chen P; Ma Y; Wang L; Rastelli A; Schmidt OG; Zhong Z
    J Nanosci Nanotechnol; 2013 Feb; 13(2):834-8. PubMed ID: 23646525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence.
    Kumar GS; Roy R; Sen D; Ghorai UK; Thapa R; Mazumder N; Saha S; Chattopadhyay KK
    Nanoscale; 2014 Mar; 6(6):3384-91. PubMed ID: 24531861
    [TBL] [Abstract][Full Text] [Related]  

  • 50. InAs quantum dots capped by GaAs, In0.4Ga0.6As dots, and In0.2Ga0.8As well.
    Fu Y; Wang SM; Ferdos F; Sadeghi M; Larsson A
    J Nanosci Nanotechnol; 2002; 2(3-4):421-6. PubMed ID: 12908273
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carrier dynamics and activation energy of CdxZn(1-x)Te/ZnTe quantum dots on GaAs and Si substrates.
    Lee HS; Yim SY; Kim TW; Park HL
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7185-8. PubMed ID: 22103153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alternation of band gap and localization of excitons in InGaNAs nanostructures with low nitrogen content.
    Gholami M; Haratizadeh H; Esmaeili M; Amiri R; Holtz PO; Hammar M
    Nanotechnology; 2008 Aug; 19(31):315705. PubMed ID: 21828797
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure.
    Wong PS; Liang BL; Dorogan VG; Albrecht AR; Tatebayashi J; He X; Nuntawong N; Mazur YI; Salamo GJ; Brueck SR; Huffaker DL
    Nanotechnology; 2008 Oct; 19(43):435710. PubMed ID: 21832714
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reversible photo- and thermal-effects on the luminescence of gold nanoclusters: implications for nanothermometry.
    Valenta J; Greben M; Pramanik G; Kvakova K; Cigler P
    Phys Chem Chem Phys; 2021 May; 23(20):11954-11960. PubMed ID: 34002180
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Origin of photoluminescence of water-soluble CuInS
    Iida K; Uehigashi Y; Kim D
    RSC Adv; 2021 Oct; 11(53):33186-33191. PubMed ID: 35497559
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bright type-II photoluminescence from Mn-doped CdS/ZnSe/ZnS quantum dots with Mn
    Xu R; Liao C; Xu Y; Zhang C; Xiao M; Zhang L; Lu C; Cui Y; Zhang J
    Nanoscale; 2017 Nov; 9(46):18281-18289. PubMed ID: 29139512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spontaneous emission of semiconductor quantum dots in inverse opal SiO2 photonic crystals at different temperatures.
    Yang P; Yang Y; Wang Y; Gao J; Sui N; Chi X; Zou L; Zhang HZ
    Luminescence; 2016 Feb; 31(1):4-7. PubMed ID: 26781789
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temperature-Dependent Exciton and Trap-Related Photoluminescence of CdTe Quantum Dots Embedded in a NaCl Matrix: Implication in Thermometry.
    Kalytchuk S; Zhovtiuk O; Kershaw SV; Zboƙil R; Rogach AL
    Small; 2016 Jan; 12(4):466-76. PubMed ID: 26618345
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low temperature photoluminescence properties of CsPbBr
    Ai B; Liu C; Deng Z; Wang J; Han J; Zhao X
    Phys Chem Chem Phys; 2017 Jul; 19(26):17349-17355. PubMed ID: 28650051
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clarifying photoluminescence decay dynamics of self-assembled quantum dots.
    Man MT; Lee HS
    Sci Rep; 2019 Mar; 9(1):4613. PubMed ID: 30874598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.