BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23646702)

  • 1. TiO2 nanotubes as animal drug delivery system and in vitro controlled release.
    Lai S; Zhang W; Liu F; Wu C; Zeng D; Sun Y; Xu Y; Fang Y; Zhou W
    J Nanosci Nanotechnol; 2013 Jan; 13(1):91-7. PubMed ID: 23646702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modified titania nanotubes containing anti-bacterial drugs for controlled delivery nanosystems with high bioactivity.
    Huang P; Wang J; Lai S; Liu F; Ni N; Cao Q; Liu W; Deng DYB; Zhou W
    J Mater Chem B; 2014 Dec; 2(48):8616-8625. PubMed ID: 32262220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and photocatalytic activity of TiO2 derived nanotubes with Ag ions doping.
    Liu F; Lai S; Huang P; Liu Y; Xu Y; Fang Y; Zhou W
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8391-5. PubMed ID: 23421220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Fabrication and photocatalytic activity of Pt-inserted titania nanotubes].
    Li HL; Luo WL; Tian WY; Chen T; Li C; Sun M; Zhu D; Liu RR; Zhao YL; Liu CL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1623-6. PubMed ID: 19810545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mussel-inspired surface modification of titania nanotubes as a novel drug delivery system.
    Khoshnood N; Zamanian A; Massoudi A
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():748-754. PubMed ID: 28532088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of construction of TiO
    Huang Q; Yang Y; Zheng D; Song R; Zhang Y; Jiang P; Vogler EA; Lin C
    Acta Biomater; 2017 Mar; 51():505-512. PubMed ID: 28093367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of different sized and porous hydroxyapatite nanorods without organic modifiers and their 5-fluorouracil release performance.
    Ji Y; Wang A; Wu G; Yin H; Liu S; Chen B; Liu F; Li X
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():14-23. PubMed ID: 26354235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotubes buckypapers for potential transdermal drug delivery.
    Schwengber A; Prado HJ; Zilli DA; Bonelli PR; Cukierman AL
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():7-13. PubMed ID: 26354234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation.
    Lee EJ; Khan SA; Park JK; Lim KH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):297-307. PubMed ID: 21909678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.
    Çalışkan N; Bayram C; Erdal E; Karahaliloğlu Z; Denkbaş EB
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():100-5. PubMed ID: 24411357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants.
    Aw MS; Khalid KA; Gulati K; Atkins GJ; Pivonka P; Findlay DM; Losic D
    Int J Nanomedicine; 2012; 7():4883-92. PubMed ID: 23028217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct fabrication of TiO2 nanoparticles deposited on hydroxyapatite crystals under mild hydrothermal conditions.
    Sujaridworakun P; Pongkao D; Ahniyaz A; Yamakawa Y; Watanabe T; Yoshimura M
    J Nanosci Nanotechnol; 2005 Jun; 5(6):875-9. PubMed ID: 16060146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustained ibuprofen release using composite poly(lactic-co-glycolic acid)/titanium dioxide nanotubes from Ti implant surface.
    Jia H; Kerr LL
    J Pharm Sci; 2013 Jul; 102(7):2341-8. PubMed ID: 23657983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application.
    Chen JF; Ding HM; Wang JX; Shao L
    Biomaterials; 2004 Feb; 25(4):723-7. PubMed ID: 14607511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytotoxicity Evaluation of pH-Controlled Antitumor Drug Release System of Titanium Dioxide Nanotubes.
    Wang Y; Yuan L; Yao C; Fang J; Wu M
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4143-8. PubMed ID: 26369023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of mesoporous titanium oxide nanotubes based on layer-by-layer assembly.
    Ai S; He Q; Tian Y; Li J
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2534-7. PubMed ID: 17663278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing and Characterization of SrTiO₃-TiO₂ Nanoparticle-Nanotube Heterostructures on Titanium for Biomedical Applications.
    Wang Y; Zhang D; Wen C; Li Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16018-26. PubMed ID: 26136139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes.
    Xiang Y; Liu X; Mao C; Liu X; Cui Z; Yang X; Yeung KWK; Zheng Y; Wu S
    Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():214-224. PubMed ID: 29407150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties.
    Kumeria T; Mon H; Aw MS; Gulati K; Santos A; Griesser HJ; Losic D
    Colloids Surf B Biointerfaces; 2015 Jun; 130():255-63. PubMed ID: 25944564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial adhesion and inactivation on Ag decorated TiO
    Hajjaji A; Elabidi M; Trabelsi K; Assadi AA; Bessais B; Rtimi S
    Colloids Surf B Biointerfaces; 2018 Oct; 170():92-98. PubMed ID: 29894837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.