These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23646711)

  • 21. Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber.
    Xin H; Li B
    Opt Express; 2011 Jul; 19(14):13285-90. PubMed ID: 21747483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial distribution and antitumor activities after intratumoral injection of fragmented fibers with loaded hydroxycamptothecin.
    Wei J; Luo X; Chen M; Lu J; Li X
    Acta Biomater; 2015 Sep; 23():189-200. PubMed ID: 26013039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Vitro and In Vivo Therapeutic Evaluation of Camptothecin-Encapsulated β-Cyclodextrin Nanosponges in Prostate Cancer.
    Gigliotti CL; Minelli R; Cavalli R; Occhipinti S; Barrera G; Pizzimenti S; Cappellano G; Boggio E; Conti L; Fantozzi R; Giovarelli M; Trotta F; Dianzani U; Dianzani C
    J Biomed Nanotechnol; 2016 Jan; 12(1):114-27. PubMed ID: 27301177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conducting polymers with defined micro- or nanostructures for drug delivery.
    Uppalapati D; Boyd BJ; Garg S; Travas-Sejdic J; Svirskis D
    Biomaterials; 2016 Dec; 111():149-162. PubMed ID: 27728814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and optical characterization of silicon nanoparticles.
    Cho B; Lee SG; Woo HG; Sohn H
    J Nanosci Nanotechnol; 2013 Jan; 13(1):384-7. PubMed ID: 23646742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Particle characteristics and biodistribution of camptothecin-loaded PLA/(PEG-PPG-PEG) nanoparticles.
    Kunii R; Onishi H; Ueki K; Koyama K; Machida Y
    Drug Deliv; 2008 Jan; 15(1):3-10. PubMed ID: 18197517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and characterization of surface-derivatized porous silicon "smart particles" for detection of streptavidin.
    Jang S; Kim J; Koh Y; Park J; Woo HG; Kim S; Sohn H
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5166-71. PubMed ID: 19198413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation, formula optimization and antitumor actions of mannitol coupling camptothecin nanoparticles.
    Wang Z; Li Q; Zhao X; Sun B; Zhu Q; Gao W; Hua C
    Int J Pharm; 2014 Apr; 465(1-2):360-7. PubMed ID: 24530520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Testosterone- and vitamin-grafted cellulose ethers for sustained release of camptothecin.
    Quiñones JP; Mardare CC; Hassel AW; Brüggemann O
    Carbohydr Polym; 2019 Feb; 206():641-652. PubMed ID: 30553368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced anticancer activity of drug nanoparticles formulated with β-cyclodextrin.
    Zhan H; Jagtiani T; Liang JF
    Anticancer Drugs; 2017 Mar; 28(3):271-280. PubMed ID: 27926611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drug release from electric-field-responsive nanoparticles.
    Ge J; Neofytou E; Cahill TJ; Beygui RE; Zare RN
    ACS Nano; 2012 Jan; 6(1):227-33. PubMed ID: 22111891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: integrating molecular dynamics and dissipative particle dynamics simulations.
    Luo Z; Jiang J
    J Control Release; 2012 Aug; 162(1):185-93. PubMed ID: 22743107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cascaded photoinduced drug delivery to cells from multifunctional core-shell mesoporous silica.
    Schlossbauer A; Sauer AM; Cauda V; Schmidt A; Engelke H; Rothbauer U; Zolghadr K; Leonhardt H; Bräuchle C; Bein T
    Adv Healthc Mater; 2012 May; 1(3):316-20. PubMed ID: 23184746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SDS-aided immobilization and controlled release of camptothecin from agarose hydrogel.
    Liu J; Li L
    Eur J Pharm Sci; 2005 Jun; 25(2-3):237-44. PubMed ID: 15911219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of Human Ig G Using Photoluminescent Porous Silicon Interferometer.
    Cho B; Kim S; Woo HG; Kim S; Sohn H
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1083-7. PubMed ID: 26353616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system.
    Shrestha N; Shahbazi MA; Araújo F; Mäkilä E; Raula J; Kauppinen EI; Salonen J; Sarmento B; Hirvonen J; Santos HA
    Biomaterials; 2015 Nov; 68():9-20. PubMed ID: 26253804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical modeling of drug release from nanostructured porous Si: combining carrier erosion and hindered drug diffusion for predicting release kinetics.
    Tzur-Balter A; Young JM; Bonanno-Young LM; Segal E
    Acta Biomater; 2013 Sep; 9(9):8346-53. PubMed ID: 23770226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glutathione- and pH-responsive nonporous silica prodrug nanoparticles for controlled release and cancer therapy.
    Xu Z; Liu S; Kang Y; Wang M
    Nanoscale; 2015 Mar; 7(13):5859-68. PubMed ID: 25757484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering porous silicon nanostructures as tunable carriers for mitoxantrone dihydrochloride.
    Tzur-Balter A; Gilert A; Massad-Ivanir N; Segal E
    Acta Biomater; 2013 Apr; 9(4):6208-17. PubMed ID: 23274152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1.
    Myndrul V; Viter R; Savchuk M; Koval M; Starodub N; Silamiķelis V; Smyntyna V; Ramanavicius A; Iatsunskyi I
    Talanta; 2017 Dec; 175():297-304. PubMed ID: 28841993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.