BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23646735)

  • 1. Dehydration of glycerol over niobia-supported silicotungstic acid catalysts.
    Lee YY; Ok HJ; Moon DJ; Kim JH; Park NC; Kim YC
    J Nanosci Nanotechnol; 2013 Jan; 13(1):339-43. PubMed ID: 23646735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of silica-supported silicotungstic acid as a catalyst for the dehydration of glycerol.
    Katryniok B; Paul S; Capron M; Bellière-Baca V; Rey P; Dumeignil F
    ChemSusChem; 2012 Jul; 5(7):1298-306. PubMed ID: 22505057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the dehydration of glycerol over niobium catalysts.
    Lee YY; Moon DJ; Kim JH; Park NC; Kim YC
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7128-31. PubMed ID: 22103140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.
    Viswanadham B; Srikanth A; Kumar VP; Chary KV
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5391-402. PubMed ID: 26373149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids.
    Zhu S; Zhu Y; Gao X; Mo T; Zhu Y; Li Y
    Bioresour Technol; 2013 Feb; 130():45-51. PubMed ID: 23306111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extending Catalyst Life in Glycerol-to-Acrolein Conversion Using Non-thermal Plasma.
    Liu L; Ye XP; Katryniok B; Capron M; Paul S; Dumeignil F
    Front Chem; 2019; 7():108. PubMed ID: 30881953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acrolein Production by Gas-Phase Glycerol Dehydration Using PO₄/Nb₂O
    Lee KA; Ryoo H; Ma BC; Kim Y
    J Nanosci Nanotechnol; 2018 Feb; 18(2):1312-1315. PubMed ID: 29448580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient and heterogeneous recyclable silicotungstic acid with modified acid sites as a catalyst for conversion of fructose and sucrose into 5-hydroxymethylfurfural in superheated water.
    Jadhav AH; Kim H; Hwang IT
    Bioresour Technol; 2013 Mar; 132():342-50. PubMed ID: 23435221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous siliconiobium phosphate as a pure Brønsted acid catalyst with excellent performance for the dehydration of glycerol to acrolein.
    Choi Y; Park DS; Yun HJ; Baek J; Yun D; Yi J
    ChemSusChem; 2012 Dec; 5(12):2460-8. PubMed ID: 23132784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aqueous phase reforming of glycerol over nanosize Cu-Ni catalysts.
    Kim JY; Kim SH; Moon DJ; Kim JH; Park NC; Kim YC
    J Nanosci Nanotechnol; 2013 Jan; 13(1):593-7. PubMed ID: 23646780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of grafting zirconia and ceria onto alumina as a support for silicotungstic acid for the catalytic dehydration of glycerol to acrolein.
    Haider MH; D'Agostino C; Dummer NF; Mantle MD; Gladden LF; Knight DW; Willock DJ; Morgan DJ; Taylor SH; Hutchings GJ
    Chemistry; 2014 Feb; 20(6):1743-52. PubMed ID: 24403184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogenolysis of Glycerol to Propylene Glycol on Nanosized Cu-Zn-Al Catalysts Prepared Using Microwave Process.
    Kim DW; Ha SH; Moon MJ; Lim KT; Ryu YB; Lee SD; Lee MS; Hong SS
    J Nanosci Nanotechnol; 2015 Jan; 15(1):656-9. PubMed ID: 26328420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicotungstic acid modified CeO2 catalyst with high stability for the catalytic combustion of chlorobenzene.
    Zhang X; Wei Y; Song Z; Liu W; Gao C; Luo J
    Chemosphere; 2021 Jan; 263():128129. PubMed ID: 33297117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogenolysis of Glycerol to 1,2-Propanediol Over Clay Based Catalysts.
    Lee SY; Jung JS; Yang EH; Lee KY; Moon DJ
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8783-9. PubMed ID: 26726594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of catalyst pore structure and acid properties on the dehydration of glycerol.
    Choi Y; Park H; Yun YS; Yi J
    ChemSusChem; 2015 Mar; 8(6):974-9. PubMed ID: 25418679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autothermal reforming of propane over Ni catalysts supported on a variety of perovskites.
    Lim S; Moon D; Kim J; Kim Y; Park N; Shin J
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4013-6. PubMed ID: 18047107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic oxidative dehydration of glycerol over a catalyst with iron oxide domains embedded in an iron orthovanadate phase.
    Wang F; Xu J; Dubois JL; Ueda W
    ChemSusChem; 2010 Dec; 3(12):1383-9. PubMed ID: 21077100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic Dehydration of Glycerol to Acrolein in a Two-Zone Fluidized Bed Reactor.
    Katryniok B; Meléndez R; Bellière-Baca V; Rey P; Dumeignil F; Fatah N; Paul S
    Front Chem; 2019; 7():127. PubMed ID: 30923707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-Phase Dehydration of Glycerol to Acrolein with ZSM-5-Based Catalysts in the Presence of a Dispersing Agent.
    Huang L; Wang B; Liu L; Borgna A
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vapour Phase Dehydration of Glycerol to Acrolein Over Wells-Dawson Type H
    Ding J; Ma T; Yan C; Shao R; Xu W; Yun Z
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2463-2471. PubMed ID: 29442915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.