These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23646758)

  • 1. Effects of crystallization and non-lattice oxygen atoms on Cu(x)O-based resistive switching memory.
    Lin CC; Wu PH; Chang YP
    J Nanosci Nanotechnol; 2013 Jan; 13(1):483-6. PubMed ID: 23646758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable complementary resistive switching behaviours of a plasma-oxidised titanium oxide nanolayer.
    Tang G; Zeng F; Chen C; Liu H; Gao S; Song C; Lin Y; Chen G; Pan F
    Nanoscale; 2013 Jan; 5(1):422-8. PubMed ID: 23187889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique.
    Singh B; Mehta BR; Varandani D; Savu AV; Brugger J
    Nanotechnology; 2012 Dec; 23(49):495707. PubMed ID: 23149566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance switching characteristics of HfO2 film with electrode for resistance change random access memory.
    Park IS; Lee JH; Lee S; Ahn J
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4139-42. PubMed ID: 18047136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The observation of resistive switching characteristics using transparent and biocompatible Cu
    Abbas Y; Dugasani SR; Raza MT; Jeon YR; Park SH; Choi C
    Nanotechnology; 2019 Aug; 30(33):335203. PubMed ID: 31026860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photo-stimulated resistive switching of ZnO nanorods.
    Park J; Lee S; Yong K
    Nanotechnology; 2012 Sep; 23(38):385707. PubMed ID: 22948083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memory applications and electrical bistability of semiconducting nanoparticles: do the phenomena depend on bandgap?
    Das BC; Pal AJ
    Small; 2008 May; 4(5):542-7. PubMed ID: 18421723
    [No Abstract]   [Full Text] [Related]  

  • 8. Physical electro-thermal model of resistive switching in bi-layered resistance-change memory.
    Kim S; Kim SJ; Kim KM; Lee SR; Chang M; Cho E; Kim YB; Kim CJ; Chung U-; Yoo IK
    Sci Rep; 2013; 3():1680. PubMed ID: 23604263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnO1-x nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application.
    Huang CH; Huang JS; Lin SM; Chang WY; He JH; Chueh YL
    ACS Nano; 2012 Sep; 6(9):8407-14. PubMed ID: 22900519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lognormal switching times for titanium dioxide bipolar memristors: origin and resolution.
    Medeiros-Ribeiro G; Perner F; Carter R; Abdalla H; Pickett MD; Williams RS
    Nanotechnology; 2011 Mar; 22(9):095702. PubMed ID: 21258143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generic relevance of counter charges for cation-based nanoscale resistive switching memories.
    Tappertzhofen S; Valov I; Tsuruoka T; Hasegawa T; Waser R; Aono M
    ACS Nano; 2013 Jul; 7(7):6396-402. PubMed ID: 23786236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable processes for fabricating non-volatile memory devices using self-assembled 2D arrays of gold nanoparticles as charge storage nodes.
    Muralidharan G; Bhat N; Santhanam V
    Nanoscale; 2011 Nov; 3(11):4575-9. PubMed ID: 21987060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confining grains of textured Cu2O films to single-crystal nanowires and resultant change in resistive switching characteristics.
    Deng XL; Hong S; Hwang I; Kim JS; Jeon JH; Park YC; Lee J; Kang SO; Kawai T; Park BH
    Nanoscale; 2012 Mar; 4(6):2029-33. PubMed ID: 22334037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties.
    Lee JS; Cho J; Lee C; Kim I; Park J; Kim YM; Shin H; Lee J; Caruso F
    Nat Nanotechnol; 2007 Dec; 2(12):790-5. PubMed ID: 18654433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size control of gold nanoparticles grown on polyaniline nanofibers for bistable memory devices.
    Baker CO; Shedd B; Tseng RJ; Martinez-Morales AA; Ozkan CS; Ozkan M; Yang Y; Kaner RB
    ACS Nano; 2011 May; 5(5):3469-74. PubMed ID: 21469712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Memory and threshold resistance switching in Ni/NiO core-shell nanowires.
    He L; Liao ZM; Wu HC; Tian XX; Xu DS; Cross GL; Duesberg GS; Shvets IV; Yu DP
    Nano Lett; 2011 Nov; 11(11):4601-6. PubMed ID: 21985530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size control of Cu nanorods through oxygen-mediated growth and low temperature sintering.
    Wang PI; Parker TC; Karabacak T; Wang GC; Lu TM
    Nanotechnology; 2009 Feb; 20(8):085605. PubMed ID: 19417453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide thin films for flexible nonvolatile memory applications.
    Jeong HY; Kim JY; Kim JW; Hwang JO; Kim JE; Lee JY; Yoon TH; Cho BJ; Kim SO; Ruoff RS; Choi SY
    Nano Lett; 2010 Nov; 10(11):4381-6. PubMed ID: 20919689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valence Change Bipolar Resistive Switching Accompanied With Magnetization Switching in CoFe
    Munjal S; Khare N
    Sci Rep; 2017 Sep; 7(1):12427. PubMed ID: 28963521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistive switching in nanogap systems on SiO2 substrates.
    Yao J; Zhong L; Zhang Z; He T; Jin Z; Wheeler PJ; Natelson D; Tour JM
    Small; 2009 Dec; 5(24):2910-5. PubMed ID: 19787676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.