These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 23646825)
1. Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers. Adrianos SL; Teulé F; Hinman MB; Jones JA; Weber WS; Yarger JL; Lewis RV Biomacromolecules; 2013 Jun; 14(6):1751-60. PubMed ID: 23646825 [TBL] [Abstract][Full Text] [Related]
2. Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers. Teulé F; Addison B; Cooper AR; Ayon J; Henning RW; Benmore CJ; Holland GP; Yarger JL; Lewis RV Biopolymers; 2012 Jun; 97(6):418-31. PubMed ID: 22012252 [TBL] [Abstract][Full Text] [Related]
3. Spider silk proteome provides insight into the structural characterization of Nephila clavipes flagelliform spidroin. Dos Santos-Pinto JRA; Arcuri HA; Esteves FG; Palma MS; Lubec G Sci Rep; 2018 Oct; 8(1):14674. PubMed ID: 30279551 [TBL] [Abstract][Full Text] [Related]
4. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Hayashi CY; Shipley NH; Lewis RV Int J Biol Macromol; 1999; 24(2-3):271-5. PubMed ID: 10342774 [TBL] [Abstract][Full Text] [Related]
5. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. Hayashi CY; Lewis RV J Mol Biol; 1998 Feb; 275(5):773-84. PubMed ID: 9480768 [TBL] [Abstract][Full Text] [Related]
6. Structural characterization and mechanical properties of chimeric Masp1/Flag minispidroins. Xu S; Li X; Zhou Y; Lin Y; Meng Q Biochimie; 2020 Jan; 168():251-258. PubMed ID: 31783091 [TBL] [Abstract][Full Text] [Related]
7. Complete gene sequence and mechanical property of the fourth type of major ampullate silk protein. Wen R; Wang S; Wang K; Yang D; Zan X; Meng Q Acta Biomater; 2023 Jan; 155():282-291. PubMed ID: 36427684 [TBL] [Abstract][Full Text] [Related]
8. Molecular cloning and expression of the C-terminus of spider flagelliform silk protein from Araneus ventricosus. Lee KS; Kim BY; Je YH; Woo SD; Sohn HD; Jin BR J Biosci; 2007 Jun; 32(4):705-12. PubMed ID: 17762143 [TBL] [Abstract][Full Text] [Related]
9. Sequential origin in the high performance properties of orb spider dragline silk. Blackledge TA; Pérez-Rigueiro J; Plaza GR; Perea B; Navarro A; Guinea GV; Elices M Sci Rep; 2012; 2():782. PubMed ID: 23110251 [TBL] [Abstract][Full Text] [Related]
10. Molecular Dynamics of Synthetic Flagelliform Silk Fiber Assembly. de C Bittencourt DM; Oliveira PF; Souto BM; de Freitas SM; Silva LP; Murad AM; Michalczechen-Lacerda VA; Lewis RV; Rech EL Macromol Mater Eng; 2021 Jan; 306(1):. PubMed ID: 34539237 [TBL] [Abstract][Full Text] [Related]
11. Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers. Albertson AE; Teulé F; Weber W; Yarger JL; Lewis RV J Mech Behav Biomed Mater; 2014 Jan; 29():225-34. PubMed ID: 24113297 [TBL] [Abstract][Full Text] [Related]
12. Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders. Rousseau ME; Lefèvre T; Pézolet M Biomacromolecules; 2009 Oct; 10(10):2945-53. PubMed ID: 19785404 [TBL] [Abstract][Full Text] [Related]
14. Solid-state NMR comparison of various spiders' dragline silk fiber. Creager MS; Jenkins JE; Thagard-Yeaman LA; Brooks AE; Jones JA; Lewis RV; Holland GP; Yarger JL Biomacromolecules; 2010 Aug; 11(8):2039-43. PubMed ID: 20593757 [TBL] [Abstract][Full Text] [Related]
15. Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. An B; Hinman MB; Holland GP; Yarger JL; Lewis RV Biomacromolecules; 2011 Jun; 12(6):2375-81. PubMed ID: 21574576 [TBL] [Abstract][Full Text] [Related]
16. Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Brooks AE; Stricker SM; Joshi SB; Kamerzell TJ; Middaugh CR; Lewis RV Biomacromolecules; 2008 Jun; 9(6):1506-10. PubMed ID: 18457450 [TBL] [Abstract][Full Text] [Related]
17. Identification and dynamics of polyglycine II nanocrystals in Argiope trifasciata flagelliform silk. Perea GB; Riekel C; Guinea GV; Madurga R; Daza R; Burghammer M; Hayashi C; Elices M; Plaza GR; Pérez-Rigueiro J Sci Rep; 2013 Oct; 3():3061. PubMed ID: 24162473 [TBL] [Abstract][Full Text] [Related]
18. An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia. Brooks AE; Steinkraus HB; Nelson SR; Lewis RV Biomacromolecules; 2005; 6(6):3095-9. PubMed ID: 16283732 [TBL] [Abstract][Full Text] [Related]
19. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. Hinman MB; Lewis RV J Biol Chem; 1992 Sep; 267(27):19320-4. PubMed ID: 1527052 [TBL] [Abstract][Full Text] [Related]
20. Variation of mechanical properties with amino acid content in the silk of Nephila clavipes. Zax DB; Armanios DE; Horak S; Brodowski C; Yang Z Biomacromolecules; 2004; 5(3):732-8. PubMed ID: 15132654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]