BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 23646825)

  • 21. Brown widow (Latrodectus geometricus) major ampullate silk protein and its material properties.
    Motriuk-Smith D; Lewis RV
    Biomed Sci Instrum; 2004; 40():64-9. PubMed ID: 15133936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and characterization of Nephila clavipes tubuliform silk gut.
    Ruiz V; Jiang P; Müller C; Jorge I; Vázquez J; Ridruejo Á; Aznar-Cervantes SD; Cenis JL; Messeguer-Olmo L; Elices M; Guinea GV; Pérez-Rigueiro J
    Soft Matter; 2019 Apr; 15(14):2960-2970. PubMed ID: 30901019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spider flagelliform silk: lessons in protein design, gene structure, and molecular evolution.
    Hayashi CY; Lewis RV
    Bioessays; 2001 Aug; 23(8):750-6. PubMed ID: 11494324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
    Lazaris A; Arcidiacono S; Huang Y; Zhou JF; Duguay F; Chretien N; Welsh EA; Soares JW; Karatzas CN
    Science; 2002 Jan; 295(5554):472-6. PubMed ID: 11799236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like "spacer regions".
    Colgin MA; Lewis RV
    Protein Sci; 1998 Mar; 7(3):667-72. PubMed ID: 9541398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative Correlation between the protein primary sequences and secondary structures in spider dragline silks.
    Jenkins JE; Creager MS; Lewis RV; Holland GP; Yarger JL
    Biomacromolecules; 2010 Jan; 11(1):192-200. PubMed ID: 20000730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk.
    Blackledge TA; Summers AP; Hayashi CY
    Zoology (Jena); 2005; 108(1):41-6. PubMed ID: 16351953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recombinant minimalist spider wrapping silk proteins capable of native-like fiber formation.
    Xu L; Rainey JK; Meng Q; Liu XQ
    PLoS One; 2012; 7(11):e50227. PubMed ID: 23209681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber.
    Xia XX; Qian ZG; Ki CS; Park YH; Kaplan DL; Lee SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(32):14059-63. PubMed ID: 20660779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altering the mechanics of spider silk through methanol post-spin drawing.
    Brooks AE; Creager MS; Lewis RV
    Biomed Sci Instrum; 2005; 41():1-6. PubMed ID: 15850073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of recombinantly produced spider flagelliform silk domains.
    Heim M; Ackerschott CB; Scheibel T
    J Struct Biol; 2010 May; 170(2):420-5. PubMed ID: 20045468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Forcibly spun dragline silk fibers from web-building spider Trichonephila clavata ensure robustness irrespective of spinning speed and humidity.
    Yazawa K; Sasaki U
    Int J Biol Macromol; 2021 Jan; 168():550-557. PubMed ID: 33333091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Cuboid Spider Silk: Structure-Function Relationship and Polypeptide Signature.
    Kong N; Wan F; Dai W; Wu P; Su C; Peng C; Zheng K; Chen X; Ling S; Gong J; Yao Y
    Macromol Rapid Commun; 2020 Mar; 41(6):e1900583. PubMed ID: 32009279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic spider silk fibers spun from Pyriform Spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs.
    Geurts P; Zhao L; Hsia Y; Gnesa E; Tang S; Jeffery F; La Mattina C; Franz A; Larkin L; Vierra C
    Biomacromolecules; 2010 Dec; 11(12):3495-503. PubMed ID: 21053953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reproducing natural spider silks' copolymer behavior in synthetic silk mimics.
    An B; Jenkins JE; Sampath S; Holland GP; Hinman M; Yarger JL; Lewis R
    Biomacromolecules; 2012 Dec; 13(12):3938-48. PubMed ID: 23110450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elucidating metabolic pathways for amino acid incorporation into dragline spider silk using 13C enrichment and solid state NMR.
    Creager MS; Izdebski T; Brooks AE; Lewis RV
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Jul; 159(3):219-24. PubMed ID: 21334448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders.
    dos Santos-Pinto JR; Lamprecht G; Chen WQ; Heo S; Hardy JG; Priewalder H; Scheibel TR; Palma MS; Lubec G
    J Proteomics; 2014 Jun; 105():174-85. PubMed ID: 24434585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Punctuated evolution of viscid silk in spider orb webs supported by mechanical behavior of wet cribellate silk.
    Piorkowski D; Blackledge TA
    Naturwissenschaften; 2017 Aug; 104(7-8):67. PubMed ID: 28752413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular studies of a novel dragline silk from a nursery web spider, Euprosthenops sp. (Pisauridae).
    Pouchkina-Stantcheva NN; McQueen-Mason SJ
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Aug; 138(4):371-6. PubMed ID: 15325337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk.
    Holland GP; Lewis RV; Yarger JL
    J Am Chem Soc; 2004 May; 126(18):5867-72. PubMed ID: 15125679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.