These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 23646826)

  • 1. Efficacy and ligand bias at the μ-opioid receptor.
    Kelly E
    Br J Pharmacol; 2013 Aug; 169(7):1430-46. PubMed ID: 23646826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standard opioid agonists activate heteromeric opioid receptors: evidence for morphine and [d-Ala(2)-MePhe(4)-Glyol(5)]enkephalin as selective μ-δ agonists.
    Yekkirala AS; Kalyuzhny AE; Portoghese PS
    ACS Chem Neurosci; 2010 Feb; 1(2):146-54. PubMed ID: 22816017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SR-17018 Stimulates Atypical µ-Opioid Receptor Phosphorylation and Dephosphorylation.
    Fritzwanker S; Schulz S; Kliewer A
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic exposure to mu-opioid agonists produces constitutive activation of mu-opioid receptors in direct proportion to the efficacy of the agonist used for pretreatment.
    Liu JG; Prather PL
    Mol Pharmacol; 2001 Jul; 60(1):53-62. PubMed ID: 11408600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine.
    Bagley EE; Chieng BC; Christie MJ; Connor M
    Br J Pharmacol; 2005 Sep; 146(1):68-76. PubMed ID: 15980868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins.
    Melkes B; Hejnova L; Novotny J
    Naunyn Schmiedebergs Arch Pharmacol; 2016 Dec; 389(12):1289-1300. PubMed ID: 27600870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opioid agonists have different efficacy profiles for G protein activation, rapid desensitization, and endocytosis of mu-opioid receptors.
    Borgland SL; Connor M; Osborne PB; Furness JB; Christie MJ
    J Biol Chem; 2003 May; 278(21):18776-84. PubMed ID: 12642578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of opioid agonists on G protein expression in CHO cells expressing cloned human opioid receptors.
    Xu H; Wang X; Partilla JS; Bishop-Mathis K; Benaderet TS; Dersch CM; Simpson DS; Prisinzano TE; Rothman RB
    Brain Res Bull; 2008 Sep; 77(1):49-54. PubMed ID: 18639745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mu opioid receptor efficacy and potency of morphine-6-glucuronide in neonatal guinea pig brainstem membranes: comparison with transfected CHO cells.
    Gray RE; Munks MW; Haynes RR; Olsen GD
    Brain Res Bull; 2001 Mar; 54(5):499-505. PubMed ID: 11397539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biased Agonism of Endogenous Opioid Peptides at the μ-Opioid Receptor.
    Thompson GL; Lane JR; Coudrat T; Sexton PM; Christopoulos A; Canals M
    Mol Pharmacol; 2015 Aug; 88(2):335-46. PubMed ID: 26013541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence.
    Wells JL; Bartlett JL; Ananthan S; Bilsky EJ
    J Pharmacol Exp Ther; 2001 May; 297(2):597-605. PubMed ID: 11303048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of phospholipase D2 in the agonist-induced and constitutive endocytosis of G-protein coupled receptors.
    Koch T; Wu DF; Yang LQ; Brandenburg LO; Höllt V
    J Neurochem; 2006 Apr; 97(2):365-72. PubMed ID: 16539674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-selective activation of mu-oid receptor: demonstrated with deletion and single amino acid mutations of third intracellular loop domain.
    Chaipatikul V; Loh HH; Law PY
    J Pharmacol Exp Ther; 2003 Jun; 305(3):909-18. PubMed ID: 12626655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor.
    Thompson GL; Lane JR; Coudrat T; Sexton PM; Christopoulos A; Canals M
    Biochem Pharmacol; 2016 Aug; 113():70-87. PubMed ID: 27286929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biased ligand quantification in drug discovery: from theory to high throughput screening to identify new biased μ opioid receptor agonists.
    Winpenny D; Clark M; Cawkill D
    Br J Pharmacol; 2016 Apr; 173(8):1393-403. PubMed ID: 26791140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residues W320 and Y328 within the binding site of the μ-opioid receptor influence opiate ligand bias.
    Hothersall JD; Torella R; Humphreys S; Hooley M; Brown A; McMurray G; Nickolls SA
    Neuropharmacology; 2017 May; 118():46-58. PubMed ID: 28283391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pharmacological comparison of the cloned frog and human mu opioid receptors reveals differences in opioid affinity and function.
    Brasel CM; Sawyer GW; Stevens CW
    Eur J Pharmacol; 2008 Dec; 599(1-3):36-43. PubMed ID: 18930720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central HIV-1 Tat exposure elevates anxiety and fear conditioned responses of male mice concurrent with altered mu-opioid receptor-mediated G-protein activation and β-arrestin 2 activity in the forebrain.
    Hahn YK; Paris JJ; Lichtman AH; Hauser KF; Sim-Selley LJ; Selley DE; Knapp PE
    Neurobiol Dis; 2016 Aug; 92(Pt B):124-36. PubMed ID: 26845176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel approach to demonstrate high efficacy of mu opioids in the rat vas deferens: a simple model of predictive value.
    Riba P; Friedmann T; Király KP; Al-Khrasani M; Sobor M; Asim MF; Spetea M; Schmidhammer H; Furst S
    Brain Res Bull; 2010 Jan; 81(1):178-84. PubMed ID: 19800397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biased agonism of clinically approved μ-opioid receptor agonists and TRV130 is not controlled by binding and signaling kinetics.
    Pedersen MF; Wróbel TM; Märcher-Rørsted E; Pedersen DS; Møller TC; Gabriele F; Pedersen H; Matosiuk D; Foster SR; Bouvier M; Bräuner-Osborne H
    Neuropharmacology; 2020 Apr; 166():107718. PubMed ID: 31351108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.