These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 23647196)

  • 1. Superhydrophobic surfaces engineered using diatomaceous earth.
    Oliveira NM; Reis RL; Mano JF
    ACS Appl Mater Interfaces; 2013 May; 5(10):4202-8. PubMed ID: 23647196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Durability and restoring of superhydrophobic properties in silica-based coatings.
    Mahadik SA; Fernando PD; Hegade ND; Wagh PB; Gupta SC
    J Colloid Interface Sci; 2013 Sep; 405():262-8. PubMed ID: 23746435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties.
    Xu QF; Liu Y; Lin FJ; Mondal B; Lyons AM
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8915-24. PubMed ID: 23889192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning drug loading and release properties of diatom silica microparticles by surface modifications.
    Bariana M; Aw MS; Kurkuri M; Losic D
    Int J Pharm; 2013 Feb; 443(1-2):230-41. PubMed ID: 23287775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of cell adhesive behaviors on superhydrophobic, superhydrophilic, and micropatterned superhydrophobic/superhydrophilic surfaces to their surface chemistry.
    Ishizaki T; Saito N; Takai O
    Langmuir; 2010 Jun; 26(11):8147-54. PubMed ID: 20131757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials.
    Koch K; Barthlott W
    Philos Trans A Math Phys Eng Sci; 2009 Apr; 367(1893):1487-509. PubMed ID: 19324720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the wettability of hierarchically structured thermoplastics.
    Cortese B; Morgan H
    Langmuir; 2012 Jan; 28(1):896-904. PubMed ID: 22043942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid formation of superhydrophobic surfaces with fast response wettability transition.
    Zhu X; Zhang Z; Men X; Yang J; Xu X
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3636-41. PubMed ID: 21073178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid one-step fabrication of patternable superhydrophobic surfaces driven by Marangoni instability.
    Kang SM; Hwang S; Jin SH; Choi CH; Kim J; Park BJ; Lee D; Lee CS
    Langmuir; 2014 Mar; 30(10):2828-34. PubMed ID: 24564739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wettability control of ZnO nanoparticles for universal applications.
    Lee M; Kwak G; Yong K
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3350-6. PubMed ID: 21819107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability.
    Satulu V; Ionita MD; Vizireanu S; Mitu B; Dinescu G
    Molecules; 2016 Dec; 21(12):. PubMed ID: 27983598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wettability influences cell behavior on superhydrophobic surfaces with different topographies.
    Lourenço BN; Marchioli G; Song W; Reis RL; van Blitterswijk CA; Karperien M; van Apeldoorn A; Mano JF
    Biointerphases; 2012 Dec; 7(1-4):46. PubMed ID: 22833364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of deposition parameters on the wettability and microstructure of superhydrophobic films with hierarchical micro-nano structures.
    Basu BJ; Manasa J
    J Colloid Interface Sci; 2011 Nov; 363(2):655-62. PubMed ID: 21864844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays.
    Yong J; Chen F; Yang Q; Zhang D; Bian H; Du G; Si J; Meng X; Hou X
    Langmuir; 2013 Mar; 29(10):3274-9. PubMed ID: 23391207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of plasma processed surfaces with tuned wettability.
    Ruiz A; Valsesia A; Ceccone G; Gilliland D; Colpo P; Rossi F
    Langmuir; 2007 Dec; 23(26):12984-9. PubMed ID: 18020471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable wetting of polymer surfaces.
    Yilgor I; Bilgin S; Isik M; Yilgor E
    Langmuir; 2012 Oct; 28(41):14808-14. PubMed ID: 22989033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches.
    Lima AC; Mano JF
    Nanomedicine (Lond); 2015 Jan; 10(1):103-19. PubMed ID: 25597772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.
    Huovinen E; Hirvi J; Suvanto M; Pakkanen TA
    Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.