BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23647249)

  • 1. Combined use of spinal cord-mimicking partition type scaffold architecture and neurotrophin-3 for surgical repair of completely transected spinal cord in rats.
    Wang X; Li Y; Gao Y; Chen X; Yao J; Lin W; Chen Y; Liu J; Yang Y; Wang X
    J Biomater Sci Polym Ed; 2013; 24(8):927-39. PubMed ID: 23647249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene.
    Yao L; Daly W; Newland B; Yao S; Wang W; Chen BK; Madigan N; Windebank A; Pandit A
    Gene Ther; 2013 Dec; 20(12):1149-57. PubMed ID: 23883961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord.
    Hurtado A; Moon LD; Maquet V; Blits B; Jérôme R; Oudega M
    Biomaterials; 2006 Jan; 27(3):430-42. PubMed ID: 16102815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.
    Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D
    J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord.
    Lai BQ; Che MT; Du BL; Zeng X; Ma YH; Feng B; Qiu XC; Zhang K; Liu S; Shen HY; Wu JL; Ling EA; Zeng YS
    Biomaterials; 2016 Dec; 109():40-54. PubMed ID: 27665078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplantation of mesenchymal stem cells that overexpress NT-3 produce motor improvements without axonal regeneration following complete spinal cord transections in rats.
    Stewart AN; Kendziorski G; Deak ZM; Bartosek NC; Rezmer BE; Jenrow K; Rossignol J; Dunbar GL
    Brain Res; 2018 Nov; 1699():19-33. PubMed ID: 29883625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection.
    Qiu XC; Jin H; Zhang RY; Ding Y; Zeng X; Lai BQ; Ling EA; Wu JL; Zeng YS
    Stem Cell Res Ther; 2015 May; 6(1):105. PubMed ID: 26012641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional restoration of rabbit spinal cord using collagen-filament scaffold.
    Yoshii S; Ito S; Shima M; Taniguchi A; Akagi M
    J Tissue Eng Regen Med; 2009 Jan; 3(1):19-25. PubMed ID: 19012267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model.
    Cholas RH; Hsu HP; Spector M
    Biomaterials; 2012 Mar; 33(7):2050-9. PubMed ID: 22182744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cograft of neural stem cells and schwann cells overexpressing TrkC and neurotrophin-3 respectively after rat spinal cord transection.
    Wang JM; Zeng YS; Wu JL; Li Y; Teng YD
    Biomaterials; 2011 Oct; 32(30):7454-68. PubMed ID: 21783247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury.
    Zhang S; Wang XJ; Li WS; Xu XL; Hu JB; Kang XQ; Qi J; Ying XY; You J; Du YZ
    Acta Biomater; 2018 Sep; 77():15-27. PubMed ID: 30126591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear ordered collagen scaffolds loaded with collagen-binding neurotrophin-3 promote axonal regeneration and partial functional recovery after complete spinal cord transection.
    Fan J; Xiao Z; Zhang H; Chen B; Tang G; Hou X; Ding W; Wang B; Zhang P; Dai J; Xu R
    J Neurotrauma; 2010 Sep; 27(9):1671-83. PubMed ID: 20597688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair.
    Liu T; Xu J; Chan BP; Chew SY
    J Biomed Mater Res A; 2012 Jan; 100(1):236-42. PubMed ID: 22042649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord.
    Xia L; Wan H; Hao SY; Li DZ; Chen G; Gao CC; Li JH; Yang F; Wang SG; Liu S
    Chin Med J (Engl); 2013 Mar; 126(5):909-17. PubMed ID: 23489801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regeneration of completely transected spinal cord using scaffold of poly(D,L-lactide-co-glycolide)/small intestinal submucosa seeded with rat bone marrow stem cells.
    Kang KN; Lee JY; Kim DY; Lee BN; Ahn HH; Lee B; Khang G; Park SR; Min BH; Kim JH; Lee HB; Kim MS
    Tissue Eng Part A; 2011 Sep; 17(17-18):2143-52. PubMed ID: 21529281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone marrow stromal cells-loaded chitosan conduits promote repair of complete transection injury in rat spinal cord.
    Chen X; Yang Y; Yao J; Lin W; Li Y; Chen Y; Gao Y; Yang Y; Gu X; Wang X
    J Mater Sci Mater Med; 2011 Oct; 22(10):2347-56. PubMed ID: 21792742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord.
    Guest JD; Rao A; Olson L; Bunge MB; Bunge RP
    Exp Neurol; 1997 Dec; 148(2):502-22. PubMed ID: 9417829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury.
    Yan Q; Ruan JW; Ding Y; Li WJ; Li Y; Zeng YS
    Exp Toxicol Pathol; 2011 Jan; 63(1-2):151-6. PubMed ID: 20005688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury.
    Nomura H; Baladie B; Katayama Y; Morshead CM; Shoichet MS; Tator CH
    Neurosurgery; 2008 Jul; 63(1):127-41; discussion 141-3. PubMed ID: 18728578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.