These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 23647251)
1. Design and physicochemical characterization of poly(amidoamine) nanoparticles and the toxicological evaluation in human endothelial cells: applications to peptide delivery to the brain. Coué G; Freese C; Unger RE; Kirkpatrick CJ; Pickl KE; Sinner FM; Engbersen JF J Biomater Sci Polym Ed; 2013; 24(8):957-71. PubMed ID: 23647251 [TBL] [Abstract][Full Text] [Related]
2. Bioresponsive poly(amidoamine)s designed for intracellular protein delivery. Coué G; Freese C; Unger RE; Kirkpatrick CJ; Engbersen JF Acta Biomater; 2013 Apr; 9(4):6062-74. PubMed ID: 23237985 [TBL] [Abstract][Full Text] [Related]
3. Functionalized linear poly(amidoamine)s are efficient vectors for intracellular protein delivery. Coué G; Engbersen JF J Control Release; 2011 May; 152(1):90-8. PubMed ID: 21277918 [TBL] [Abstract][Full Text] [Related]
4. Photocrosslinked poly(amidoamine) nanoparticles for central nervous system targeting. Gevorgyan S; Rossi E; Cappelluti MA; Tocchio A; Martello F; Gerges I; Lenardi C; Milani P; Argentiere S Colloids Surf B Biointerfaces; 2017 Mar; 151():197-205. PubMed ID: 28013163 [TBL] [Abstract][Full Text] [Related]
5. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model. Ohtsuki S; Ikeda C; Uchida Y; Sakamoto Y; Miller F; Glacial F; Decleves X; Scherrmann JM; Couraud PO; Kubo Y; Tachikawa M; Terasaki T Mol Pharm; 2013 Jan; 10(1):289-96. PubMed ID: 23137377 [TBL] [Abstract][Full Text] [Related]
6. Development and in vitro evaluation of antigen-loaded poly(amidoamine) nanoparticles for respiratory epithelium applications. Coué G; Hermanns I; Unger RE; Kirkpatrick CJ; Engbersen JF ChemMedChem; 2013 Nov; 8(11):1787-94. PubMed ID: 24009081 [TBL] [Abstract][Full Text] [Related]
7. Attaching the phage display-selected GLA peptide to liposomes: factors influencing target binding. van Rooy I; Hennink WE; Storm G; Schiffelers RM; Mastrobattista E Eur J Pharm Sci; 2012 Feb; 45(3):330-5. PubMed ID: 22155541 [TBL] [Abstract][Full Text] [Related]
8. β-cyclodextrin-poly(β-amino ester) nanoparticles for sustained drug delivery across the blood-brain barrier. Gil ES; Wu L; Xu L; Lowe TL Biomacromolecules; 2012 Nov; 13(11):3533-41. PubMed ID: 23066958 [TBL] [Abstract][Full Text] [Related]
9. Ligand-based targeted delivery of a peptide modified nanocarrier to endothelial cells in adipose tissue. Hossen MN; Kajimoto K; Akita H; Hyodo M; Ishitsuka T; Harashima H J Control Release; 2010 Oct; 147(2):261-8. PubMed ID: 20647023 [TBL] [Abstract][Full Text] [Related]
10. Self-assembly cationic nanoparticles based on cholesterol-grafted bioreducible poly(amidoamine) for siRNA delivery. Chen CJ; Wang JC; Zhao EY; Gao LY; Feng Q; Liu XY; Zhao ZX; Ma XF; Hou WJ; Zhang LR; Lu WL; Zhang Q Biomaterials; 2013 Jul; 34(21):5303-16. PubMed ID: 23570718 [TBL] [Abstract][Full Text] [Related]
11. Bioreducible poly(amidoamine)s as carriers for intracellular protein delivery to intestinal cells. Cohen S; Coué G; Beno D; Korenstein R; Engbersen JF Biomaterials; 2012 Jan; 33(2):614-23. PubMed ID: 22014947 [TBL] [Abstract][Full Text] [Related]
12. Modification of the C16Y peptide on nanoparticles is an effective approach to target endothelial and cancer cells via the integrin receptor. Hamano N; Negishi Y; Fujisawa A; Manandhar M; Sato H; Katagiri F; Nomizu M; Aramaki Y Int J Pharm; 2012 May; 428(1-2):114-7. PubMed ID: 22421321 [TBL] [Abstract][Full Text] [Related]
13. Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles. Xu Q; Liu Y; Su S; Li W; Chen C; Wu Y Biomaterials; 2012 Feb; 33(5):1627-39. PubMed ID: 22118775 [TBL] [Abstract][Full Text] [Related]
14. Vascular-targeted nanotherapy for obesity: unexpected passive targeting mechanism to obese fat for the enhancement of active drug delivery. Hossen MN; Kajimoto K; Akita H; Hyodo M; Harashima H J Control Release; 2012 Oct; 163(2):101-10. PubMed ID: 22982237 [TBL] [Abstract][Full Text] [Related]
15. Targeted delivery of small interfering RNA to angiogenic endothelial cells with liposome-polycation-DNA particles. Vader P; Crielaard BJ; van Dommelen SM; van der Meel R; Storm G; Schiffelers RM J Control Release; 2012 Jun; 160(2):211-6. PubMed ID: 21983283 [TBL] [Abstract][Full Text] [Related]
16. Endothelial nanoparticle binding kinetics are matrix and size dependent. Doiron AL; Clark B; Rinker KD Biotechnol Bioeng; 2011 Dec; 108(12):2988-98. PubMed ID: 21766288 [TBL] [Abstract][Full Text] [Related]
17. Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly(lactide-co-glycolide) nanoparticles. Kuo YC; Lin PI; Wang CC Nanomedicine (Lond); 2011 Aug; 6(6):1011-26. PubMed ID: 21707298 [TBL] [Abstract][Full Text] [Related]
18. Poly(amidoamine) salt form: effect on pH-dependent membrane activity and polymer conformation in solution. Wan KW; Malgesini B; Verpilio I; Ferruti P; Griffiths PC; Paul A; Hann AC; Duncan R Biomacromolecules; 2004; 5(3):1102-9. PubMed ID: 15132705 [TBL] [Abstract][Full Text] [Related]
19. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Liu Y; Huang R; Han L; Ke W; Shao K; Ye L; Lou J; Jiang C Biomaterials; 2009 Sep; 30(25):4195-202. PubMed ID: 19467700 [TBL] [Abstract][Full Text] [Related]
20. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Ke W; Shao K; Huang R; Han L; Liu Y; Li J; Kuang Y; Ye L; Lou J; Jiang C Biomaterials; 2009 Dec; 30(36):6976-85. PubMed ID: 19765819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]