These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23647410)

  • 1. Directed self-assembly of nanoparticles for nanomotors.
    Dong B; Zhou T; Zhang H; Li CY
    ACS Nano; 2013 Jun; 7(6):5192-8. PubMed ID: 23647410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chiral magnetic nanomotors.
    Morozov KI; Leshansky AM
    Nanoscale; 2014; 6(3):1580-8. PubMed ID: 24336860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A micromotor based on polymer single crystals and nanoparticles: toward functional versatility.
    Liu M; Liu L; Gao W; Su M; Ge Y; Shi L; Zhang H; Dong B; Li CY
    Nanoscale; 2014 Aug; 6(15):8601-5. PubMed ID: 24979365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic mesoporous Janus nanomotors for active cargo delivery.
    Ma X; Hahn K; Sanchez S
    J Am Chem Soc; 2015 Apr; 137(15):4976-9. PubMed ID: 25844893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organized multiconstituent catalytic nanomotors.
    Gibbs JG; Zhao Y
    Small; 2010 Aug; 6(15):1656-62. PubMed ID: 20669163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing charge-storage capacity of non-volatile memory devices using template-directed assembly of gold nanoparticles.
    Gupta RK; Krishnamoorthy S; Kusuma DY; Lee PS; Srinivasan MP
    Nanoscale; 2012 Apr; 4(7):2296-300. PubMed ID: 22374470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable nanoparticle ensembles via high-throughput directed self-assembly.
    Dai Q; Chen Y; Liu CC; Rettner CT; Holmdahl B; Gleixner S; Chung R; Pitera JW; Cheng J; Nelson A
    Langmuir; 2013 Mar; 29(11):3567-74. PubMed ID: 23458256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Loading and Unloading of Proteins in Polymeric Stomatocytes: Formation of an Enzyme-Loaded Supramolecular Nanomotor.
    Abdelmohsen LK; Nijemeisland M; Pawar GM; Janssen GJ; Nolte RJ; van Hest JC; Wilson DA
    ACS Nano; 2016 Feb; 10(2):2652-60. PubMed ID: 26811982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors.
    You CC; Miranda OR; Gider B; Ghosh PS; Kim IB; Erdogan B; Krovi SA; Bunz UH; Rotello VM
    Nat Nanotechnol; 2007 May; 2(5):318-23. PubMed ID: 18654291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle mediated micromotor motion.
    Liu M; Liu L; Gao W; Su M; Ge Y; Shi L; Zhang H; Dong B; Li CY
    Nanoscale; 2015 Mar; 7(11):4949-55. PubMed ID: 25689965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General Thermodynamic-Controlled Coating Method to Prepare Janus Mesoporous Nanomotors for Improving Tumor Penetration.
    Chen K; Peng X; Dang M; Tao J; Ma J; Li Z; Zheng L; Su X; Wang L; Teng Z
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51297-51311. PubMed ID: 34668372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-Guided Nanomotor Systems for Autonomous Photothermal Cancer Therapy.
    Choi H; Lee GH; Kim KS; Hahn SK
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2338-2346. PubMed ID: 29280612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motility of catalytic nanoparticles through self-generated forces.
    Paxton WF; Sen A; Mallouk TE
    Chemistry; 2005 Nov; 11(22):6462-70. PubMed ID: 16052651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding micelle nanolithography to the self-assembly of multicomponent core-shell nanoparticles.
    Mbenkum BN; Díaz-Ortiz A; Gu L; van Aken PA; Schütz G
    J Am Chem Soc; 2010 Aug; 132(31):10671-3. PubMed ID: 20681695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous movement of controllable assembled Janus capsule motors.
    Wu Y; Wu Z; Lin X; He Q; Li J
    ACS Nano; 2012 Dec; 6(12):10910-6. PubMed ID: 23153409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen peroxide sensing using ultrathin platinum-coated gold nanoparticles with core@shell structure.
    Li Y; Lu Q; Wu S; Wang L; Shi X
    Biosens Bioelectron; 2013 Mar; 41():576-81. PubMed ID: 23062554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic Autonomous Enzymatic Nanowalker of High Fuel Efficiency.
    Liu M; Cheng J; Tee SR; Sreelatha S; Loh IY; Wang Z
    ACS Nano; 2016 Jun; 10(6):5882-90. PubMed ID: 27294366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuel concentration dependent movement of supramolecular catalytic nanomotors.
    Wilson DA; de Nijs B; van Blaaderen A; Nolte RJ; van Hest JC
    Nanoscale; 2013 Feb; 5(4):1315-8. PubMed ID: 23223943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-nanotube-induced acceleration of catalytic nanomotors.
    Laocharoensuk R; Burdick J; Wang J
    ACS Nano; 2008 May; 2(5):1069-75. PubMed ID: 19206505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetics for next generation materials.
    Barthelat F
    Philos Trans A Math Phys Eng Sci; 2007 Dec; 365(1861):2907-19. PubMed ID: 17855221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.