These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 23647443)
1. Synergistic and antagonistic effects of α-Amylase and amyloglucosidase on starch digestion. Zhang B; Dhital S; Gidley MJ Biomacromolecules; 2013 Jun; 14(6):1945-54. PubMed ID: 23647443 [TBL] [Abstract][Full Text] [Related]
2. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content. Brewer LR; Cai L; Shi YC J Agric Food Chem; 2012 May; 60(17):4379-87. PubMed ID: 22480190 [TBL] [Abstract][Full Text] [Related]
3. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). Ao Z; Quezada-Calvillo R; Sim L; Nichols BL; Rose DR; Sterchi EE; Hamaker BR FEBS Lett; 2007 May; 581(13):2381-8. PubMed ID: 17485087 [TBL] [Abstract][Full Text] [Related]
4. The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems. Warren FJ; Zhang B; Waltzer G; Gidley MJ; Dhital S Carbohydr Polym; 2015 Mar; 117():192-200. PubMed ID: 25498625 [TBL] [Abstract][Full Text] [Related]
5. Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches. Lopez-Rubio A; Flanagan BM; Shrestha AK; Gidley MJ; Gilbert EP Biomacromolecules; 2008 Jul; 9(7):1951-8. PubMed ID: 18529077 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of in vitro digestion of starches monitored by time-resolved (1)H Nuclear Magnetic Resonance. Dona AC; Pages G; Gilbert RG; Gaborieau M; Kuchel PW Biomacromolecules; 2009 Mar; 10(3):638-44. PubMed ID: 19209867 [TBL] [Abstract][Full Text] [Related]
7. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from Bacillus licheniformis. Qin F; Man J; Xu B; Hu M; Gu M; Liu Q; Wei C J Agric Food Chem; 2011 Dec; 59(23):12667-73. PubMed ID: 22059442 [TBL] [Abstract][Full Text] [Related]
8. Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Gupta K; Jana AK; Kumar S; Maiti M Bioprocess Biosyst Eng; 2013 Nov; 36(11):1715-24. PubMed ID: 23572179 [TBL] [Abstract][Full Text] [Related]
9. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme. Uthumporn U; Shariffa YN; Karim AA Appl Biochem Biotechnol; 2012 Mar; 166(5):1167-82. PubMed ID: 22203397 [TBL] [Abstract][Full Text] [Related]
10. Influence of enzymatic hydrolysis on the properties of red rice starch. Almeida RLJ; Dos Santos Pereira T; de Andrade Freire V; Santiago ÂM; Oliveira HML; de Sousa Conrado L; de Gusmão RP Int J Biol Macromol; 2019 Dec; 141():1210-1219. PubMed ID: 31521658 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic hydrolysis of chestnut purée: process optimization using mixtures of alpha-amylase and glucoamylase. López C; Torrado A; Fuciños P; Guerra NP; Pastrana L J Agric Food Chem; 2004 May; 52(10):2907-14. PubMed ID: 15137834 [TBL] [Abstract][Full Text] [Related]
13. Substitution patterns in methylated potato starch as revealed from the structure and composition of fragments in enzymatic digests. Steeneken PA; Tas AC; Woortman AJ; Sanders P; Mijland PJ; de Weijs LG Carbohydr Res; 2008 Sep; 343(14):2411-6. PubMed ID: 18692178 [TBL] [Abstract][Full Text] [Related]
14. Genome mining for new α-amylase and glucoamylase encoding sequences and high level expression of a glucoamylase from Talaromyces stipitatus for potential raw starch hydrolysis. Xiao Z; Wu M; Grosse S; Beauchemin M; Lévesque M; Lau PC Appl Biochem Biotechnol; 2014 Jan; 172(1):73-86. PubMed ID: 24046254 [TBL] [Abstract][Full Text] [Related]
15. Amylolytic hydrolysis of native starch granules affected by granule surface area. Kim JC; Kong BW; Kim MJ; Lee SH J Food Sci; 2008 Nov; 73(9):C621-4. PubMed ID: 19021791 [TBL] [Abstract][Full Text] [Related]
16. Co-conjugation vis-à-vis individual conjugation of α-amylase and glucoamylase for hydrolysis of starch. Jadhav SB; Singhal RS Carbohydr Polym; 2013 Oct; 98(1):1191-7. PubMed ID: 23987463 [TBL] [Abstract][Full Text] [Related]
17. Revisiting Mechanisms Underlying Digestion of Starches. Wang Y; Chao C; Huang H; Wang S; Wang S; Wang S; Copeland L J Agric Food Chem; 2019 Jul; 67(29):8212-8226. PubMed ID: 31309827 [TBL] [Abstract][Full Text] [Related]
18. Influence of molecular structure on the susceptibility of starch to α-amylase. Villas-Boas F; Yamauti Y; Moretti MMS; Franco CML Carbohydr Res; 2019 Jun; 479():23-30. PubMed ID: 31102972 [TBL] [Abstract][Full Text] [Related]
19. Optimization of solid-state enzymatic hydrolysis of chestnut using mixtures of alpha-amylase and glucoamylase. López C; Torrado A; Guerra NP; Pastrana L J Agric Food Chem; 2005 Feb; 53(4):989-95. PubMed ID: 15713010 [TBL] [Abstract][Full Text] [Related]
20. Removal of starch granule-associated proteins affects amyloglucosidase hydrolysis of rice starch granules. Ma M; Xu Z; Li P; Sui Z; Corke H Carbohydr Polym; 2020 Nov; 247():116674. PubMed ID: 32829802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]