These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 23647443)

  • 41. Amylase binding to starch granules under hydrolysing and non-hydrolysing conditions.
    Dhital S; Warren FJ; Zhang B; Gidley MJ
    Carbohydr Polym; 2014 Nov; 113():97-107. PubMed ID: 25256464
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction of cellulose nanocrystals and amylase: Its influence on enzyme activity and resistant starch content.
    Ji N; Liu C; Li M; Sun Q; Xiong L
    Food Chem; 2018 Apr; 245():481-487. PubMed ID: 29287399
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of enzymatic treatment of different starch sources on the in vitro rate and extent of starch digestion.
    Kasprzak MM; Lærke HN; Hofmann Larsen F; Bach Knudsen KE; Pedersen S; Jørgensen AS
    Int J Mol Sci; 2012; 13(1):929-942. PubMed ID: 22312295
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterisation of three starch degrading enzymes: thermostable β-amylase, maltotetraogenic and maltogenic α-amylases.
    Derde LJ; Gomand SV; Courtin CM; Delcour JA
    Food Chem; 2012 Nov; 135(2):713-21. PubMed ID: 22868150
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Long chains and crystallinity govern the enzymatic degradability of gelatinized starches from conventional and new sources.
    Gaenssle ALO; Satyawan CA; Xiang G; van der Maarel MJEC; Jurak E
    Carbohydr Polym; 2021 May; 260():117801. PubMed ID: 33712149
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mutual interactions between α-amylase and amyloglucosidase in the digestion of starch with distinct chain-length distributions at a fully gelatinized state.
    Zhou X; Wang C; Yue S; Zheng Y; Li C; Yu W
    Food Funct; 2022 Mar; 13(6):3453-3464. PubMed ID: 35244103
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Performance of Granular Starch with Controlled Pore Size during Hydrolysis with Digestive Enzymes.
    Benavent-Gil Y; Rosell CM
    Plant Foods Hum Nutr; 2017 Dec; 72(4):353-359. PubMed ID: 28983746
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of amyloglucosidase hydrolysis on the multi-scale supramolecular structure of corn starch.
    Yang Z; Xu X; Singh R; de Campo L; Gilbert EP; Wu Z; Hemar Y
    Carbohydr Polym; 2019 May; 212():40-50. PubMed ID: 30832873
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Starch characterization and ethanol production of sorghum.
    Ai Y; Medic J; Jiang H; Wang D; Jane JL
    J Agric Food Chem; 2011 Jul; 59(13):7385-92. PubMed ID: 21604720
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field.
    Yang K; Xu NS; Su WW
    J Biotechnol; 2010 Jul; 148(2-3):119-27. PubMed ID: 20580753
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Significant differences in the activities of alpha-amylases in the absence and presence of polyethylene glycol assayed on eight starches solubilized by two methods.
    Mukerjea R; Slocum G; Mukerjea R; Robyt JF
    Carbohydr Res; 2006 Sep; 341(12):2049-54. PubMed ID: 16762330
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Porous high amylose rice starch modified by amyloglucosidase and maltogenic α-amylase.
    Keeratiburana T; Hansen AR; Soontaranon S; Blennow A; Tongta S
    Carbohydr Polym; 2020 Feb; 230():115611. PubMed ID: 31887905
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Degradation of raw starch granules by alpha-amylase purified from culture of Aspergillus awamori KT-11.
    Matsubara T; Ben Ammar Y; Anindyawati T; Yamamoto S; Ito K; Iizuka M; Minamiura N
    J Biochem Mol Biol; 2004 Jul; 37(4):422-8. PubMed ID: 15469729
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The intensification of amyloglucosidase-based saccharification by ultrasound.
    Oliveira HM; Pinheiro AQ; Fonseca AJM; Cabrita ARJ; Maia MRG
    Ultrason Sonochem; 2018 Dec; 49():128-136. PubMed ID: 30100267
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro amylolysis of pulse and hylon VII starches explained in terms of their composition, morphology, granule architecture and interaction between hydrolysed starch chains.
    Maaran S; Hoover R; Vamadevan V; Waduge RN; Liu Q
    Food Chem; 2016 Feb; 192():1098-108. PubMed ID: 26304453
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tribology of swollen starch granule suspensions from maize and potato.
    Zhang B; Selway N; Shelat KJ; Dhital S; Stokes JR; Gidley MJ
    Carbohydr Polym; 2017 Jan; 155():128-135. PubMed ID: 27702496
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbohydrate-binding module 74 is a novel starch-binding domain associated with large and multidomain α-amylase enzymes.
    Valk V; Lammerts van Bueren A; van der Kaaij RM; Dijkhuizen L
    FEBS J; 2016 Jun; 283(12):2354-68. PubMed ID: 27101946
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure.
    Ao Z; Simsek S; Zhang G; Venkatachalam M; Reuhs BL; Hamaker BR
    J Agric Food Chem; 2007 May; 55(11):4540-7. PubMed ID: 17488022
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The structure property and adsorption capacity of new enzyme-treated potato and sweet potato starches.
    Guo L; Li J; Li H; Zhu Y; Cui B
    Int J Biol Macromol; 2020 Feb; 144():863-873. PubMed ID: 31751700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.