These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23647537)

  • 41. Experimental quantification of anion-π interactions in solution using neutral host-guest model systems.
    Ballester P
    Acc Chem Res; 2013 Apr; 46(4):874-84. PubMed ID: 22621170
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of cation-pi interactions on RNA-binding proteins.
    Anbarasu A; Anand S; Mathew L; Sethumadhavan R
    Int J Biol Macromol; 2007 Apr; 40(5):479-83. PubMed ID: 17197018
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accurate Description of Cation-π Interactions in Proteins with a Nonpolarizable Force Field at No Additional Cost.
    Liu H; Fu H; Shao X; Cai W; Chipot C
    J Chem Theory Comput; 2020 Oct; 16(10):6397-6407. PubMed ID: 32852943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anion-π interactions in complexes of proteins and halogen-containing amino acids.
    Borozan SZ; Zlatović MV; Stojanović SĐ
    J Biol Inorg Chem; 2016 Jun; 21(3):357-68. PubMed ID: 26910415
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metal ligand aromatic cation-pi interactions in metalloproteins: ligands coordinated to metal interact with aromatic residues.
    Zarić SD; Popović DM; Knapp EW
    Chemistry; 2000 Nov; 6(21):3935-42. PubMed ID: 11126954
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of novel statistical potentials describing cation-pi interactions in proteins and comparison with semiempirical and quantum chemistry approaches.
    Gilis D; Biot C; Buisine E; Dehouck Y; Rooman M
    J Chem Inf Model; 2006; 46(2):884-93. PubMed ID: 16563020
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine.
    Remko M; Rode BM
    J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative assessment of substituent effects on cation-π interactions using molecular electrostatic potential topography.
    Sayyed FB; Suresh CH
    J Phys Chem A; 2011 Aug; 115(33):9300-7. PubMed ID: 21774520
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction Energies in Complexes of Zn and Amino Acids: A Comparison of Ab Initio and Force Field Based Calculations.
    Ahlstrand E; Hermansson K; Friedman R
    J Phys Chem A; 2017 Apr; 121(13):2643-2654. PubMed ID: 28272891
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The binding affinity of uncharged aromatic solutes for negatively charged resins is enhanced by cations via cation-π interactions: The case of sodium ion and arginine.
    Hirano A; Iwashita K; Ura T; Sakuraba S; Shiraki K; Arakawa T; Kameda T
    J Chromatogr A; 2019 Jun; 1595():97-107. PubMed ID: 30833023
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cation-π Interactions between Quaternary Ammonium Ions and Amino Acid Aromatic Groups in Aqueous Solution.
    Orabi EA; Lamoureux G
    J Phys Chem B; 2018 Mar; 122(8):2251-2260. PubMed ID: 29397727
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of cation-pi interactions in aqueous solution using deuterium nuclear magnetic resonance spectroscopy.
    Zhu D; Herbert BE; Schlautman MA; Carraway ER
    J Environ Qual; 2004; 33(1):276-84. PubMed ID: 14964382
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural analysis of residues involving cation-pi interactions in different folding types of membrane proteins.
    Gromiha MM; Suwa M
    Int J Biol Macromol; 2005 Mar; 35(1-2):55-62. PubMed ID: 15769516
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Weak hydrogen bonding motifs of ethylamino neurotransmitter radical cations in a hydrophobic environment: infrared spectra of tryptamine(+)-(N2)n clusters (n ≤ 6).
    Sakota K; Schütz M; Schmies M; Moritz R; Bouchet A; Ikeda T; Kouno Y; Sekiya H; Dopfer O
    Phys Chem Chem Phys; 2014 Feb; 16(8):3798-806. PubMed ID: 24429940
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical study on the polar hydrogen-π (Hp-π) interactions between protein side chains.
    Du QS; Wang QY; Du LQ; Chen D; Huang RB
    Chem Cent J; 2013; 7():92. PubMed ID: 23705926
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carbohydrate - Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations.
    Stanković IM; Blagojević Filipović JP; Zarić SD
    Int J Biol Macromol; 2020 Aug; 157():1-9. PubMed ID: 32268187
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cation-pi effects in the complexation of Na+ and K+ with Phe, Tyr, and Trp in the gas phase.
    Ryzhov V; Dunbar RC; Cerda B; Wesdemiotis C
    J Am Soc Mass Spectrom; 2000 Dec; 11(12):1037-46. PubMed ID: 11118110
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis.
    Mao L; Wang Y; Liu Y; Hu X
    J Mol Biol; 2004 Feb; 336(3):787-807. PubMed ID: 15095988
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational analysis of the amino acid interactions that promote or decrease protein solubility.
    Hou Q; Bourgeas R; Pucci F; Rooman M
    Sci Rep; 2018 Oct; 8(1):14661. PubMed ID: 30279585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Active transport of amino acids by a guanidiniocarbonyl-pyrrole receptor.
    Urban C; Schmuck C
    Chemistry; 2010 Aug; 16(31):9502-10. PubMed ID: 20480464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.