These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 23647663)

  • 1. Exclusively membrane-inserted state of an uncleavable Tat precursor protein suggests lateral transfer into the bilayer from the translocon.
    Ren C; Patel R; Robinson C
    FEBS J; 2013 Jul; 280(14):3354-64. PubMed ID: 23647663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity of signal peptide recognition in tat-dependent bacterial protein translocation.
    Blaudeck N; Sprenger GA; Freudl R; Wiegert T
    J Bacteriol; 2001 Jan; 183(2):604-10. PubMed ID: 11133954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery.
    Ignatova Z; Hörnle C; Nurk A; Kasche V
    Biochem Biophys Res Commun; 2002 Feb; 291(1):146-9. PubMed ID: 11829474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains.
    Ize B; Coulthurst SJ; Hatzixanthis K; Caldelari I; Buchanan G; Barclay EC; Richardson DJ; Palmer T; Sargent F
    Microbiology (Reading); 2009 Dec; 155(Pt 12):3992-4004. PubMed ID: 19778964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli.
    Cristóbal S; de Gier JW; Nielsen H; von Heijne G
    EMBO J; 1999 Jun; 18(11):2982-90. PubMed ID: 10357811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase.
    Hatzixanthis K; Palmer T; Sargent F
    Mol Microbiol; 2003 Sep; 49(5):1377-90. PubMed ID: 12940994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secretion of active xylanase C from Streptomyces lividans is exclusively mediated by the Tat protein export system.
    Faury D; Saidane S; Li H; Morosoli R
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):155-62. PubMed ID: 15158723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrophobic region of the DmsA twin-arginine leader peptide determines specificity with chaperone DmsD.
    Winstone TM; Tran VA; Turner RJ
    Biochemistry; 2013 Oct; 52(43):7532-41. PubMed ID: 24093457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexpression of TorD enhances the transport of GFP via the TAT pathway.
    Li SY; Chang BY; Lin SC
    J Biotechnol; 2006 Apr; 122(4):412-21. PubMed ID: 16253369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane.
    Blaudeck N; Kreutzenbeck P; Freudl R; Sprenger GA
    J Bacteriol; 2003 May; 185(9):2811-9. PubMed ID: 12700260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Rieske protein from Paracoccus denitrificans is inserted into the cytoplasmic membrane by the twin-arginine translocase.
    Bachmann J; Bauer B; Zwicker K; Ludwig B; Anderka O
    FEBS J; 2006 Nov; 273(21):4817-30. PubMed ID: 16987314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif.
    Buchanan G; Sargent F; Berks BC; Palmer T
    Arch Microbiol; 2001 Dec; 177(1):107-12. PubMed ID: 11797051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal peptide protection by specific chaperone.
    Genest O; Seduk F; Ilbert M; Méjean V; Iobbi-Nivol C
    Biochem Biophys Res Commun; 2006 Jan; 339(3):991-5. PubMed ID: 16337610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo dissection of the Tat translocation pathway in Escherichia coli.
    Ize B; Gérard F; Zhang M; Chanal A; Voulhoux R; Palmer T; Filloux A; Wu LF
    J Mol Biol; 2002 Mar; 317(3):327-35. PubMed ID: 11922668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proofreading of substrate structure by the Twin-Arginine Translocase is highly dependent on substrate conformational flexibility but surprisingly tolerant of surface charge and hydrophobicity changes.
    Jones AS; Austerberry JI; Dajani R; Warwicker J; Curtis R; Derrick JP; Robinson C
    Biochim Biophys Acta; 2016 Dec; 1863(12):3116-3124. PubMed ID: 27619192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prerequisites for terminal processing of thylakoidal Tat substrates.
    Frielingsdorf S; Klösgen RB
    J Biol Chem; 2007 Aug; 282(33):24455-62. PubMed ID: 17581816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The core TatABC complex of the twin-arginine translocase in Escherichia coli: TatC drives assembly whereas TatA is essential for stability.
    Mangels D; Mathers J; Bolhuis A; Robinson C
    J Mol Biol; 2005 Jan; 345(2):415-23. PubMed ID: 15571732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of membrane-bound respiratory complexes by the Tat protein-transport system.
    Sargent F; Berks BC; Palmer T
    Arch Microbiol; 2002 Aug; 178(2):77-84. PubMed ID: 12115052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interconvertibility of lipid- and translocon-bound forms of the bacterial Tat precursor pre-SufI.
    Bageshwar UK; Whitaker N; Liang FC; Musser SM
    Mol Microbiol; 2009 Oct; 74(1):209-226. PubMed ID: 19732346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of GTP on system specific chaperone - Twin arginine signal peptide interaction.
    Cherak SJ; Turner RJ
    Biochem Biophys Res Commun; 2015 Oct; 465(4):753-7. PubMed ID: 26299930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.