These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
51 related articles for article (PubMed ID: 23647757)
1. The radiosensitization effect of titanate nanotubes as a new tool in radiation therapy for glioblastoma: a proof-of-concept. Mirjolet C; Papa AL; Créhange G; Raguin O; Seignez C; Paul C; Truc G; Maingon P; Millot N Radiother Oncol; 2013 Jul; 108(1):136-42. PubMed ID: 23647757 [TBL] [Abstract][Full Text] [Related]
2. Cytotoxicity, dose-enhancement and radiosensitization of glioblastoma cells with rare earth nanoparticles. Lu VM; Crawshay-Williams F; White B; Elliot A; Hill MA; Townley HE Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):132-143. PubMed ID: 30663430 [TBL] [Abstract][Full Text] [Related]
4. Zinc-Modified Titanate Nanotubes as Radiosensitizers for Glioblastoma: Enhancing Radiotherapy Efficacy and Monte Carlo Simulations. Diz FM; Monteiro WF; Silveira IS; Ruano D; Zotti ER; Weimer RD; Melo MN; Schossler Lopes JG; Scheffel TB; Caldas LVE; da Costa JC; Morrone FB; Ligabue RA ACS Omega; 2024 Jul; 9(27):29499-29515. PubMed ID: 39005768 [TBL] [Abstract][Full Text] [Related]
5. An Overview of Hydrothermally Synthesized Titanate Nanotubes: The Factors Affecting Preparation and Their Promising Pharmaceutical Applications. Saker R; Shammout H; Regdon G; Sovány T Pharmaceutics; 2024 May; 16(5):. PubMed ID: 38794297 [TBL] [Abstract][Full Text] [Related]
6. Sarcoma cell-specific radiation sensitization by titanate scrolled nanosheets: insights from physicochemical analysis and transcriptomic profiling. Beaudier P; Vilotte F; Simon M; Muggiolu G; Le Trequesser Q; Devès G; Plawinski L; Mikael A; Caron J; Kantor G; Dupuy D; Delville MH; Barberet P; Seznec H Sci Rep; 2024 Feb; 14(1):3295. PubMed ID: 38332121 [TBL] [Abstract][Full Text] [Related]
7. Prospects of nanoparticle-based radioenhancement for radiotherapy. Gerken LRH; Gerdes ME; Pruschy M; Herrmann IK Mater Horiz; 2023 Oct; 10(10):4059-4082. PubMed ID: 37555747 [TBL] [Abstract][Full Text] [Related]
8. The IL13α 2R paves the way for anti-glioma nanotherapy. Ulasov IV; Borovjagin A; Laevskaya A; Kamynina M; Timashev P; Cerchia L; Rozhkova EA Genes Dis; 2023 Jan; 10(1):89-100. PubMed ID: 37013057 [TBL] [Abstract][Full Text] [Related]
9. Titanate nanoribbon-based nanobiohybrid for potential applications in regenerative medicine. Maurizi L; Bellat V; Moreau M; De Maistre E; Boudon J; Dumont L; Denat F; Vandroux D; Millot N RSC Adv; 2022 Sep; 12(41):26875-26881. PubMed ID: 36320832 [TBL] [Abstract][Full Text] [Related]
10. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Maksoud S Mol Neurobiol; 2022 Sep; 59(9):5326-5365. PubMed ID: 35696013 [TBL] [Abstract][Full Text] [Related]
11. Radiation nanosensitizers in cancer therapy-From preclinical discoveries to the outcomes of early clinical trials. Bilynsky C; Millot N; Papa AL Bioeng Transl Med; 2022 Jan; 7(1):e10256. PubMed ID: 35079631 [TBL] [Abstract][Full Text] [Related]
12. A GdW Chen L; Zhang Y; Zhang X; Lv R; Sheng R; Sun R; Du T; Li Y; Qi Y Molecules; 2021 Dec; 27(1):. PubMed ID: 35011360 [TBL] [Abstract][Full Text] [Related]
13. In silico studies of interactions of peptide-conjugated cholesterol metabolites and betulinic acid with EGFR, LDR, and N-terminal fragment of CCKA receptors. Bashant MM; Mitchell SM; Hart LR; Lebedenko CG; Banerjee IA J Mol Model; 2021 Dec; 28(1):16. PubMed ID: 34961887 [TBL] [Abstract][Full Text] [Related]
14. Advances of Nanomedicine in Radiotherapy. Liu W; Chen B; Zheng H; Xing Y; Chen G; Zhou P; Qian L; Min Y Pharmaceutics; 2021 Oct; 13(11):. PubMed ID: 34834172 [TBL] [Abstract][Full Text] [Related]
15. About the Influence of PEG Spacers on the Cytotoxicity of Titanate Nanotubes-Docetaxel Nanohybrids against a Prostate Cancer Cell Line. Loiseau A; Boudon J; Mirjolet C; Morgand V; Millot N Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685172 [TBL] [Abstract][Full Text] [Related]
16. Assessment of Pharmacokinetics, Toxicity, and Biodistribution of a High Dose of Titanate Nanotubes Following Intravenous Injection in Mice: A Promising Nanosystem of Medical Interest. Baati T; Njim L; Jaafoura S; Aouane A; Neffati F; Ben Fradj N; Kerkeni A; Hammami M; Hosni K ACS Omega; 2021 Aug; 6(34):21872-21883. PubMed ID: 34497882 [TBL] [Abstract][Full Text] [Related]
17. Combining Gold Nanoparticles with Other Radiosensitizing Agents for Unlocking the Full Potential of Cancer Radiotherapy. Alhussan A; Bozdoğan EPD; Chithrani DB Pharmaceutics; 2021 Mar; 13(4):. PubMed ID: 33805917 [TBL] [Abstract][Full Text] [Related]
18. Enhancing Combined Immunotherapy and Radiotherapy through Nanomedicine. Hagan CT; Mi Y; Knape NM; Wang AZ Bioconjug Chem; 2020 Dec; 31(12):2668-2678. PubMed ID: 33251789 [TBL] [Abstract][Full Text] [Related]
19. Encapsulation of Hydrophobic Drugs in Shell-by-Shell Coated Nanoparticles for Radio-and Chemotherapy-An In Vitro Study. Klein S; Luchs T; Leng A; Distel LVR; Neuhuber W; Hirsch A Bioengineering (Basel); 2020 Oct; 7(4):. PubMed ID: 33053776 [TBL] [Abstract][Full Text] [Related]
20. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. Choi J; Kim G; Cho SB; Im HJ J Nanobiotechnology; 2020 Sep; 18(1):122. PubMed ID: 32883290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]