These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 23647863)
21. Finite Element Analysis of Mobile-bearing Unicompartmental Knee Arthroplasty: The Influence of Tibial Component Coronal Alignment. Zhu GD; Guo WS; Zhang QD; Liu ZH; Cheng LM Chin Med J (Engl); 2015 Nov; 128(21):2873-8. PubMed ID: 26521784 [TBL] [Abstract][Full Text] [Related]
22. Revision of medial Oxford unicompartmental knee replacement to a total knee replacement: similar to a primary? Wynn Jones H; Chan W; Harrison T; Smith TO; Masonda P; Walton NP Knee; 2012 Aug; 19(4):339-43. PubMed ID: 21531140 [TBL] [Abstract][Full Text] [Related]
23. Correlation of computed finite element stresses to bone density after remodeling around cementless femoral implants. Skinner HB; Kilgus DJ; Keyak J; Shimaoka EE; Kim AS; Tipton JS Clin Orthop Relat Res; 1994 Aug; (305):178-89. PubMed ID: 8050227 [TBL] [Abstract][Full Text] [Related]
24. A large scale finite element study of a cementless osseointegrated tibial tray. Galloway F; Kahnt M; Ramm H; Worsley P; Zachow S; Nair P; Taylor M J Biomech; 2013 Jul; 46(11):1900-6. PubMed ID: 23764172 [TBL] [Abstract][Full Text] [Related]
25. The influence of tibial component fixation techniques on resorption of supporting bone stock after total knee replacement. Chong DY; Hansen UN; van der Venne R; Verdonschot N; Amis AA J Biomech; 2011 Mar; 44(5):948-54. PubMed ID: 21236431 [TBL] [Abstract][Full Text] [Related]
26. Elevated proximal tibial strains following unicompartmental knee replacement--a possible cause of pain. Simpson DJ; Price AJ; Gulati A; Murray DW; Gill HS Med Eng Phys; 2009 Sep; 31(7):752-7. PubMed ID: 19278893 [TBL] [Abstract][Full Text] [Related]
27. Development and experimental validation of a finite element model of total ankle replacement. Terrier A; Larrea X; Guerdat J; Crevoisier X J Biomech; 2014 Feb; 47(3):742-5. PubMed ID: 24393809 [TBL] [Abstract][Full Text] [Related]
28. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. Yosibash Z; Padan R; Joskowicz L; Milgrom C J Biomech Eng; 2007 Jun; 129(3):297-309. PubMed ID: 17536896 [TBL] [Abstract][Full Text] [Related]
29. Finite element analysis of unicompartmental knee arthroplasty. Hopkins AR; New AM; Rodriguez-y-Baena F; Taylor M Med Eng Phys; 2010 Jan; 32(1):14-21. PubMed ID: 19897397 [TBL] [Abstract][Full Text] [Related]
30. Assessing the local mechanical environment in medial opening wedge high tibial osteotomy using finite element analysis. Pauchard Y; Ivanov TG; McErlain DD; Milner JS; Giffin JR; Birmingham TB; Holdsworth DW J Biomech Eng; 2015 Mar; 137(3):. PubMed ID: 25363041 [TBL] [Abstract][Full Text] [Related]
31. Revision of Oxford medial unicompartmental knee arthroplasty to total knee arthroplasty - results of a multicentre study. Saldanha KA; Keys GW; Svard UC; White SH; Rao C Knee; 2007 Aug; 14(4):275-9. PubMed ID: 17524650 [TBL] [Abstract][Full Text] [Related]
32. Comprehensive evaluation of PCA-based finite element modelling of the human femur. Grassi L; Schileo E; Boichon C; Viceconti M; Taddei F Med Eng Phys; 2014 Oct; 36(10):1246-52. PubMed ID: 25128959 [TBL] [Abstract][Full Text] [Related]
33. Prediction of strength and strain of the proximal femur by a CT-based finite element method. Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798 [TBL] [Abstract][Full Text] [Related]
34. An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones. Eberle S; Göttlinger M; Augat P Med Eng Phys; 2013 Jul; 35(7):875-83. PubMed ID: 23010570 [TBL] [Abstract][Full Text] [Related]
35. The radiological parameters correlated with the alignment of the femoral component after Oxford phase 3 unicompartmental knee replacement. Kim JG; Kasat NS; Bae JH; Kim SJ; Oh SM; Lim HC J Bone Joint Surg Br; 2012 Nov; 94(11):1499-505. PubMed ID: 23109629 [TBL] [Abstract][Full Text] [Related]
36. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties. Taddei F; Martelli S; Reggiani B; Cristofolini L; Viceconti M IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324 [TBL] [Abstract][Full Text] [Related]
38. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
39. The effect of the Oxford uncemented medial compartment arthroplasty on the bone mineral density and content of the proximal tibia. Hooper GJ; Gilchrist N; Maxwell R; March R; Heard A; Frampton C Bone Joint J; 2013 Nov; 95-B(11):1480-3. PubMed ID: 24151266 [TBL] [Abstract][Full Text] [Related]
40. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study. Perillo-Marcone A; Taylor M J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]