BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23648479)

  • 1. Molecular interaction of a new antibacterial polymer with a supported lipid bilayer measured by an in situ label-free optical technique.
    Horvath R; Kobzi B; Keul H; Moeller M; Kiss E
    Int J Mol Sci; 2013 May; 14(5):9722-36. PubMed ID: 23648479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape.
    Salamon Z; Tollin G
    Biophys J; 2001 Mar; 80(3):1557-67. PubMed ID: 11222316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural studies of polymer-cushioned lipid bilayers.
    Majewski J; Wong JY; Park CK; Seitz M; Israelachvili JN; Smith GS
    Biophys J; 1998 Nov; 75(5):2363-7. PubMed ID: 9788931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Lipid Bilayer Ion Permeability by Antibacterial Polymethyloxazoline-Polyethyleneimine Copolymers.
    Kozon D; Bednarczyk P; Szewczyk A; Jańczewski D
    Chembiochem; 2021 Mar; 22(6):1020-1029. PubMed ID: 33124737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes.
    Salamon Z; Lindblom G; Tollin G
    Biophys J; 2003 Mar; 84(3):1796-807. PubMed ID: 12609881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of phosphatidylserine synthase from E. coli with lipid bilayers: coupled plasmon-waveguide resonance spectroscopy studies.
    Salamon Z; Lindblom G; Rilfors L; Linde K; Tollin G
    Biophys J; 2000 Mar; 78(3):1400-12. PubMed ID: 10692325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of poly(L-lysine)-g-poly(ethylene glycol) with supported phospholipid bilayers.
    Rossetti FF; Reviakine I; Csúcs G; Assi F; Vörös J; Textor M
    Biophys J; 2004 Sep; 87(3):1711-21. PubMed ID: 15345550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of phospholipid vesicles with smooth metal-oxide surfaces.
    Csúcs G; Ramsden JJ
    Biochim Biophys Acta; 1998 Feb; 1369(1):61-70. PubMed ID: 9556348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly and molecular organization of self-assembled lipid bilayers on solid substrates monitored by surface plasmon resonance spectroscopy.
    Salamon Z; Wang Y; Tollin G; Macleod HA
    Biochim Biophys Acta; 1994 Nov; 1195(2):267-75. PubMed ID: 7947920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of lipid-functionalized poly(ethylene glycol) to gold surfaces as a cushion for polymer-supported lipid bilayers.
    Munro JC; Frank CW
    Langmuir; 2004 Apr; 20(8):3339-49. PubMed ID: 15875867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer-cushioned bilayers. I. A structural study of various preparation methods using neutron reflectometry.
    Wong JY; Majewski J; Seitz M; Park CK; Israelachvili JN; Smith GS
    Biophys J; 1999 Sep; 77(3):1445-57. PubMed ID: 10465755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties.
    Salamon Z; Macleod HA; Tollin G
    Biophys J; 1997 Nov; 73(5):2791-7. PubMed ID: 9370473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics.
    Mashaghi A; Swann M; Popplewell J; Textor M; Reimhult E
    Anal Chem; 2008 May; 80(10):3666-76. PubMed ID: 18422336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the structure-antibacterial activity of amino cation-based and acetate anion-based ionic liquids from computational interactions with the POPC phospholipid bilayer.
    Zheng W; Huang W; Song Z; Tang Z; Sun W
    Phys Chem Chem Phys; 2020 Jul; 22(27):15573-15581. PubMed ID: 32613219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using microcantilevers to study the interactions of lipid bilayers with solid surfaces.
    Liu KW; Biswal SL
    Anal Chem; 2010 Sep; 82(18):7527-32. PubMed ID: 20726504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled plasmon-waveguide resonance spectroscopy studies of the cytochrome b6f/plastocyanin system in supported lipid bilayer membranes.
    Salamon Z; Huang D; Cramer WA; Tollin G
    Biophys J; 1998 Oct; 75(4):1874-85. PubMed ID: 9746528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of model lipid bilayers at the silica-water interface by co-adsorption with non-ionic dodecyl maltoside surfactant.
    Tiberg F; Harwigsson I; Malmsten M
    Eur Biophys J; 2000; 29(3):196-203. PubMed ID: 10968211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic deformation of membrane bilayers probed by deuterium NMR relaxation.
    Brown MF; Thurmond RL; Dodd SW; Otten D; Beyer K
    J Am Chem Soc; 2002 Jul; 124(28):8471-84. PubMed ID: 12105929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of S-layer protein adsorption and crystallization on the collective motion of a planar lipid bilayer studied by dynamic light scattering.
    Hirn R; Schuster B; Sleytr UB; Bayerl TM
    Biophys J; 1999 Oct; 77(4):2066-74. PubMed ID: 10512827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.