BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 23648571)

  • 1. Stiffness and adhesivity control aortic valve interstitial cell behavior within hyaluronic acid based hydrogels.
    Duan B; Hockaday LA; Kapetanovic E; Kang KH; Butcher JT
    Acta Biomater; 2013 Aug; 9(8):7640-50. PubMed ID: 23648571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells.
    Duan B; Kapetanovic E; Hockaday LA; Butcher JT
    Acta Biomater; 2014 May; 10(5):1836-46. PubMed ID: 24334142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directing valvular interstitial cell myofibroblast-like differentiation in a hybrid hydrogel platform.
    Hjortnaes J; Camci-Unal G; Hutcheson JD; Jung SM; Schoen FJ; Kluin J; Aikawa E; Khademhosseini A
    Adv Healthc Mater; 2015 Jan; 4(1):121-30. PubMed ID: 24958085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells.
    Masters KS; Shah DN; Leinwand LA; Anseth KS
    Biomaterials; 2005 May; 26(15):2517-25. PubMed ID: 15585254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment.
    Mabry KM; Lawrence RL; Anseth KS
    Biomaterials; 2015 May; 49():47-56. PubMed ID: 25725554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active tissue stiffness modulation controls valve interstitial cell phenotype and osteogenic potential in 3D culture.
    Duan B; Yin Z; Hockaday Kang L; Magin RL; Butcher JT
    Acta Biomater; 2016 May; 36():42-54. PubMed ID: 26947381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of valvular interstitial cell phenotype and function by hyaluronic acid in 2-D and 3-D culture environments.
    Rodriguez KJ; Piechura LM; Masters KS
    Matrix Biol; 2011 Jan; 30(1):70-82. PubMed ID: 20884350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels.
    Duan B; Hockaday LA; Kang KH; Butcher JT
    J Biomed Mater Res A; 2013 May; 101(5):1255-64. PubMed ID: 23015540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascorbic acid promotes extracellular matrix deposition while preserving valve interstitial cell quiescence within 3D hydrogel scaffolds.
    Wu Y; Puperi DS; Grande-Allen KJ; West JL
    J Tissue Eng Regen Med; 2017 Jul; 11(7):1963-1973. PubMed ID: 26631842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and function of the integrin alpha9beta1 in bovine aortic valve interstitial cells.
    Wiester LM; Giachelli CM
    J Heart Valve Dis; 2003 Sep; 12(5):605-16. PubMed ID: 14565714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability.
    Immohr MB; Dos Santos Adrego F; Teichert HL; Schmidt V; Sugimura Y; Bauer S; Barth M; Lichtenberg A; Akhyari P
    Biomed Mater; 2022 Nov; 18(1):. PubMed ID: 36322974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells.
    Gwon K; Kim E; Tae G
    Acta Biomater; 2017 Feb; 49():284-295. PubMed ID: 27919839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Methacrylated Gelatin and Hyaluronic Acid Hydrogel Scaffolds. Preparation and Systematic Characterization for Prospective Tissue Engineering Applications.
    Velasco-Rodriguez B; Diaz-Vidal T; Rosales-Rivera LC; García-González CA; Alvarez-Lorenzo C; Al-Modlej A; Domínguez-Arca V; Prieto G; Barbosa S; Soltero Martínez JFA; Taboada P
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34201769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying heart valve interstitial cell contractile state using highly tunable poly(ethylene glycol) hydrogels.
    Khang A; Gonzalez Rodriguez A; Schroeder ME; Sansom J; Lejeune E; Anseth KS; Sacks MS
    Acta Biomater; 2019 Sep; 96():354-367. PubMed ID: 31323351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials.
    Masters KS; Shah DN; Walker G; Leinwand LA; Anseth KS
    J Biomed Mater Res A; 2004 Oct; 71(1):172-80. PubMed ID: 15368267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges in developing a reseeded, tissue-engineered aortic valve prosthesis.
    Hof A; Raschke S; Baier K; Nehrenheim L; Selig JI; Schomaker M; Lichtenberg A; Meyer H; Akhyari P
    Eur J Cardiothorac Surg; 2016 Sep; 50(3):446-55. PubMed ID: 27084195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of valvular endothelial cell paracrine signaling and matrix elasticity on valvular interstitial cell activation.
    Gould ST; Matherly EE; Smith JN; Heistad DD; Anseth KS
    Biomaterials; 2014 Apr; 35(11):3596-606. PubMed ID: 24462357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clickable, photodegradable hydrogels to dynamically modulate valvular interstitial cell phenotype.
    Kirschner CM; Alge DL; Gould ST; Anseth KS
    Adv Healthc Mater; 2014 May; 3(5):649-57. PubMed ID: 24459068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels.
    Camci-Unal G; Cuttica D; Annabi N; Demarchi D; Khademhosseini A
    Biomacromolecules; 2013 Apr; 14(4):1085-92. PubMed ID: 23419055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of cell-matrix interactions on VIC phenotype and tissue deposition in 3D PEG hydrogels.
    Gould ST; Anseth KS
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E443-E453. PubMed ID: 24130082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.