These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 23649007)
1. Evaluation of epiphyses in the skeletally immature knee using magnetic resonance imaging: a pilot study to analyze parameters for anterior cruciate ligament reconstruction. Davis DL; Chen L; Young ST Am J Sports Med; 2013 Jul; 41(7):1579-85. PubMed ID: 23649007 [TBL] [Abstract][Full Text] [Related]
2. A Study of Epiphyses in the Young Prepubescent Knee Using Magnetic Resonance Imaging: Evaluation of Parameters for Anterior Cruciate Ligament Reconstruction. Davis DL; Chen L; Ehinger M Orthop J Sports Med; 2014 Apr; 2(4):2325967114530090. PubMed ID: 26535321 [TBL] [Abstract][Full Text] [Related]
3. MRI Anatomy of the Tibial ACL Attachment and Proximal Epiphysis in a Large Population of Skeletally Immature Knees: Reference Parameters for Planning Anatomic Physeal-Sparing ACL Reconstruction. Swami VG; Mabee M; Hui C; Jaremko JL Am J Sports Med; 2014 Jul; 42(7):1644-51. PubMed ID: 24755252 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the Tibial Epiphysis in the Skeletally Immature Knee Using Magnetic Resonance Imaging: An Update of Anatomic Parameters Pertinent to Physeal-Sparing Anterior Cruciate Ligament Reconstruction. Davis DL; Almardawi R; Mitchell JW Orthop J Sports Med; 2016 Jun; 4(6):2325967116655313. PubMed ID: 27482528 [TBL] [Abstract][Full Text] [Related]
5. Anatomic landmarks utilized for physeal-sparing, anatomic anterior cruciate ligament reconstruction: an MRI-based study. Xerogeanes JW; Hammond KE; Todd DC J Bone Joint Surg Am; 2012 Feb; 94(3):268-76. PubMed ID: 22298060 [TBL] [Abstract][Full Text] [Related]
6. All-inside, physeal-sparing anterior cruciate ligament reconstruction does not significantly compromise the physis in skeletally immature athletes: a postoperative physeal magnetic resonance imaging analysis. Nawabi DH; Jones KJ; Lurie B; Potter HG; Green DW; Cordasco FA Am J Sports Med; 2014 Dec; 42(12):2933-40. PubMed ID: 25325558 [TBL] [Abstract][Full Text] [Related]
7. Growth plate disturbance after transphyseal reconstruction of the anterior cruciate ligament in skeletally immature adolescent patients: an MR imaging study. Yoo WJ; Kocher MS; Micheli LJ J Pediatr Orthop; 2011 Sep; 31(6):691-6. PubMed ID: 21841447 [TBL] [Abstract][Full Text] [Related]
8. MRI evaluation of the four tunnels of double-bundle ACL reconstruction. Kiekara T; Järvelä T; Huhtala H; Paakkala A Acta Radiol; 2014 Jun; 55(5):579-88. PubMed ID: 24005561 [TBL] [Abstract][Full Text] [Related]
9. Reliability of estimates of ACL attachment locations in 3-dimensional knee reconstruction based on routine clinical MRI in pediatric patients. Swami VG; Cheng-Baron J; Hui C; Thompson R; Jaremko JL Am J Sports Med; 2013 Jun; 41(6):1319-29. PubMed ID: 23576685 [TBL] [Abstract][Full Text] [Related]
10. Characterization of cruciate ligament impingement: the influence of femoral or tibial tunnel positioning at different degrees of knee flexion. Astur DC; Santos CV; Aleluia V; Astur Neto N; Arliani GG; Kaleka CC; Skaf A; Cohen M Arthroscopy; 2013 May; 29(5):913-9. PubMed ID: 23419357 [TBL] [Abstract][Full Text] [Related]
11. Normal maturation of the distal femoral epiphyseal cartilage: age-related changes at MR imaging. Varich LJ; Laor T; Jaramillo D Radiology; 2000 Mar; 214(3):705-9. PubMed ID: 10715034 [TBL] [Abstract][Full Text] [Related]
12. The anatomy of the proximal tibia in pediatric and adolescent patients: implications for ACL reconstruction and prevention of physeal arrest. Shea KG; Apel PJ; Pfeiffer RP; Traughber PD Knee Surg Sports Traumatol Arthrosc; 2007 Apr; 15(4):320-7. PubMed ID: 16909299 [TBL] [Abstract][Full Text] [Related]
13. Effect of reamer design on posteriorization of the tibial tunnel during endoscopic transtibial anterior cruciate ligament reconstruction. Bhatia S; Korth K; Van Thiel GS; Gupta D; Cole BJ; Bach BR; Verma NN Am J Sports Med; 2013 Jun; 41(6):1282-9. PubMed ID: 23585487 [TBL] [Abstract][Full Text] [Related]
14. Increased Lateral Tibial Slope Is a Risk Factor for Pediatric Anterior Cruciate Ligament Injury: An MRI-Based Case-Control Study of 152 Patients. Dare DM; Fabricant PD; McCarthy MM; Rebolledo BJ; Green DW; Cordasco FA; Jones KJ Am J Sports Med; 2015 Jul; 43(7):1632-9. PubMed ID: 26129958 [TBL] [Abstract][Full Text] [Related]
15. Correlation between anterior cruciate ligament graft obliquity and tibial rotation during dynamic pivoting activities in patients with anatomic anterior cruciate ligament reconstruction: an in vivo examination. Zampeli F; Ntoulia A; Giotis D; Tsiaras VA; Argyropoulou M; Pappas E; Georgoulis AD Arthroscopy; 2012 Feb; 28(2):234-46. PubMed ID: 22078004 [TBL] [Abstract][Full Text] [Related]
16. Vertical femoral tunnel placement results in rotational knee laxity after anterior cruciate ligament reconstruction. Lee MC; Seong SC; Lee S; Chang CB; Park YK; Jo H; Kim CH Arthroscopy; 2007 Jul; 23(7):771-8. PubMed ID: 17637414 [TBL] [Abstract][Full Text] [Related]
17. Diffusion-tensor imaging of the growing ends of long bones: pilot demonstration of columnar structure in the physes and metaphyses of the knee. Jaimes C; Berman JI; Delgado J; Ho-Fung V; Jaramillo D Radiology; 2014 Nov; 273(2):491-501. PubMed ID: 25102295 [TBL] [Abstract][Full Text] [Related]
18. Bone Bruise Patterns in Skeletally Immature Patients With Anterior Cruciate Ligament Injury: Shock-Absorbing Function of the Physis. Novaretti JV; Shin JJ; Albers M; Chambers MC; Cohen M; Musahl V; Fu FH Am J Sports Med; 2018 Jul; 46(9):2128-2132. PubMed ID: 29883199 [TBL] [Abstract][Full Text] [Related]