BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23649129)

  • 1. Improving MEG performance with additional tangential sensors.
    Nurminen J; Taulu S; Nenonen J; Helle L; Simola J; Ahonen A
    IEEE Trans Biomed Eng; 2013 Sep; 60(9):2559-66. PubMed ID: 23649129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration of a multichannel MEG system based on the signal space separation method.
    Chella F; Zappasodi F; Marzetti L; Della Penna S; Pizzella V
    Phys Med Biol; 2012 Aug; 57(15):4855-70. PubMed ID: 22797687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sensor calibration, balancing and parametrization on the signal space separation method.
    Nurminen J; Taulu S; Okada Y
    Phys Med Biol; 2008 Apr; 53(7):1975-87. PubMed ID: 18354243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realignment of magnetoencephalographic data for group analysis in the sensor domain.
    Ross B; Charron RE; Jamali S
    J Clin Neurophysiol; 2011 Apr; 28(2):190-201. PubMed ID: 21399522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the performance of the signal space separation method by comprehensive spatial sampling.
    Nurminen J; Taulu S; Okada Y
    Phys Med Biol; 2010 Mar; 55(5):1491-503. PubMed ID: 20157231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal Space Separation Method for a Biomagnetic Sensor Array Arranged on a Flat Plane for Magnetocardiographic Applications: A Computer Simulation Study.
    Sekihara K
    J Healthc Eng; 2018; 2018():7689589. PubMed ID: 29854364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial filtering of MEG signals for user-specified spherical regions.
    Ozkurt TE; Sun M; Jia W; Sclabassi RJ
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2429-38. PubMed ID: 19527953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artifact and head movement compensation in MEG.
    Medvedovsky M; Taulu S; Bikmullina R; Paetau R
    Neurol Neurophysiol Neurosci; 2007 Oct; ():4. PubMed ID: 18066426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time robust signal space separation for magnetoencephalography.
    Guo C; Li X; Taulu S; Wang W; Weber DJ
    IEEE Trans Biomed Eng; 2010 Aug; 57(8):1856-66. PubMed ID: 20176529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual MEG Helmet: Computer Simulation of an Approach to Neuromagnetic Field Sampling.
    Medvedovsky M; Nenonen J; Koptelova A; Butorina A; Paetau R; Mäkelä JP; Ahonen A; Simola J; Gazit T; Taulu S
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):539-48. PubMed ID: 25616085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating functional connectivity using 2D tangential components in MEG sensor space.
    Kim MY; Kwon H; Lim S; Lee YH; Kim JW; Kim K
    J Neurosci Methods; 2016 Jan; 257():64-75. PubMed ID: 26393280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct reconstruction algorithm of current dipoles for vector magnetoencephalography and electroencephalography.
    Nara T; Oohama J; Hashimoto M; Takeda T; Ando S
    Phys Med Biol; 2007 Jul; 52(13):3859-79. PubMed ID: 17664582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring MEG closer to the brain: Performance of on-scalp sensor arrays.
    Iivanainen J; Stenroos M; Parkkonen L
    Neuroimage; 2017 Feb; 147():542-553. PubMed ID: 28007515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of brain function in pre-school children using a custom sized whole-head MEG sensor array.
    Johnson BW; Crain S; Thornton R; Tesan G; Reid M
    Clin Neurophysiol; 2010 Mar; 121(3):340-9. PubMed ID: 19955015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal-to-noise ratio of the MEG signal after preprocessing.
    Gonzalez-Moreno A; Aurtenetxe S; Lopez-Garcia ME; del Pozo F; Maestu F; Nevado A
    J Neurosci Methods; 2014 Jan; 222():56-61. PubMed ID: 24200506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal space separation algorithm and its application on suppressing artifacts caused by vagus nerve stimulation for magnetoencephalography recordings.
    Song T; Cui L; Gaa K; Feffer L; Taulu S; Lee RR; Huang M
    J Clin Neurophysiol; 2009 Dec; 26(6):392-400. PubMed ID: 19952563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetoencephalography is feasible for infant assessment of auditory discrimination.
    Cheour M; Imada T; Taulu S; Ahonen A; Salonen J; Kuhl P
    Exp Neurol; 2004 Nov; 190 Suppl 1():S44-51. PubMed ID: 15498541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal processing in magnetoencephalography.
    Vrba J; Robinson SE
    Methods; 2001 Oct; 25(2):249-71. PubMed ID: 11812209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Information content with low- vs. high-T(c) SQUID arrays in MEG recordings: the case for high-T(c) SQUID-based MEG.
    Schneiderman JF
    J Neurosci Methods; 2014 Jan; 222():42-6. PubMed ID: 24184856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of signal space separation via simulation.
    Song T; Gaa K; Cui L; Feffer L; Lee RR; Huang M
    Med Biol Eng Comput; 2008 Sep; 46(9):923-32. PubMed ID: 18196307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.