BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 2364914)

  • 1. Bending undulations and elasticity of the erythrocyte membrane: effects of cell shape and membrane organization.
    Zeman K; Engelhard H; Sackmann E
    Eur Biophys J; 1990; 18(4):203-19. PubMed ID: 2364914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flicker spectroscopy of erythrocytes. A sensitive method to study subtle changes of membrane bending stiffness.
    Fricke K; Wirthensohn K; Laxhuber R; Sackmann E
    Eur Biophys J; 1986; 14(2):67-81. PubMed ID: 3816703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields.
    Engelhardt H; Sackmann E
    Biophys J; 1988 Sep; 54(3):495-508. PubMed ID: 3207837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition.
    Strey H; Peterson M; Sackmann E
    Biophys J; 1995 Aug; 69(2):478-88. PubMed ID: 8527662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation of frequency spectrum of the erythrocyte flickering caused by aging, osmolarity, temperature and pathological changes.
    Fricke K; Sackmann E
    Biochim Biophys Acta; 1984 Mar; 803(3):145-52. PubMed ID: 6704427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic properties of the red blood cell membrane that determine echinocyte deformability.
    Kuzman D; Svetina S; Waugh RE; Zeks B
    Eur Biophys J; 2004 Feb; 33(1):1-15. PubMed ID: 13680208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic energy of the discocyte-stomatocyte transformation.
    Muñoz S; Sebastián JL; Sancho M; Alvarez G
    Biochim Biophys Acta; 2014 Mar; 1838(3):950-6. PubMed ID: 24192054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformational strain energy and erythrocyte shape.
    McMillan DE; Mitchell TP; Utterback NG
    J Biomech; 1986; 19(4):275-86. PubMed ID: 3711126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S; Kuzman D; Waugh RE; Ziherl P; Zeks B
    Bioelectrochemistry; 2004 May; 62(2):107-13. PubMed ID: 15039011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies.
    Geekiyanage NM; Balanant MA; Sauret E; Saha S; Flower R; Lim CT; Gu Y
    PLoS One; 2019; 14(4):e0215447. PubMed ID: 31002688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer- couple hypothesis from membrane mechanics.
    Lim H W G; Wortis M; Mukhopadhyay R
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16766-9. PubMed ID: 12471152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and deformation properties of red blood cells: concepts and quantitative methods.
    Evans EA
    Methods Enzymol; 1989; 173():3-35. PubMed ID: 2674613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical measurement of cell membrane tension.
    Popescu G; Ikeda T; Goda K; Best-Popescu CA; Laposata M; Manley S; Dasari RR; Badizadegan K; Feld MS
    Phys Rev Lett; 2006 Nov; 97(21):218101. PubMed ID: 17155774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of red blood cell mechanics during morphological changes.
    Park Y; Best CA; Badizadegan K; Dasari RR; Feld MS; Kuriabova T; Henle ML; Levine AJ; Popescu G
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6731-6. PubMed ID: 20351261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axisymmetric optical-trap measurement of red blood cell membrane elasticity.
    Lewalle A; Parker KH
    J Biomech Eng; 2011 Jan; 133(1):011007. PubMed ID: 21186897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the dynamic properties of the human red blood cell membrane using quasi-elastic light-scattering spectroscopy.
    Tishler RB; Carlson FD
    Biophys J; 1993 Dec; 65(6):2586-600. PubMed ID: 8312494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoskeleton influence on normal and tangent fluctuation modes in the red blood cells.
    Rochal SB; Lorman VL
    Phys Rev Lett; 2006 Jun; 96(24):248102. PubMed ID: 16907283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical factors influencing erythrocyte deformability and capillary entrance phenomena.
    La Celle PL; Smith BD
    Scand J Clin Lab Invest Suppl; 1981; 156():145-9. PubMed ID: 6948376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of red cell membrane viscoelasticity by heat treatment: effect on cell deformability and suspension viscosity.
    Nash GB; Meiselman HJ
    Biorheology; 1985; 22(1):73-84. PubMed ID: 3986320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.