BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23649327)

  • 61. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy.
    Jeong K; Kang CS; Kim Y; Lee YD; Kwon IC; Kim S
    Cancer Lett; 2016 Apr; 374(1):31-43. PubMed ID: 26854717
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hydrophobic ion pairing as a strategy to improve drug encapsulation into lipid nanocarriers for the cancer treatment.
    Oliveira MS; Goulart GCA; Ferreira LAM; Carneiro G
    Expert Opin Drug Deliv; 2017 Aug; 14(8):983-995. PubMed ID: 27892713
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment.
    Kanapathipillai M; Brock A; Ingber DE
    Adv Drug Deliv Rev; 2014 Dec; 79-80():107-18. PubMed ID: 24819216
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Block ionomer micellar nanoparticles from double hydrophilic copolymers, classifications and promises for delivery of cancer chemotherapeutics.
    Abolmaali SS; Tamaddon AM; Salmanpour M; Mohammadi S; Dinarvand R
    Eur J Pharm Sci; 2017 Jun; 104():393-405. PubMed ID: 28416470
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Drug delivery system based on dendritic nanoparticles for enhancement of intravesical instillation.
    Qiu X; Cao K; Lin T; Chen W; Yuan A; Wu J; Hu Y; Guo H
    Int J Nanomedicine; 2017; 12():7365-7374. PubMed ID: 29066888
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Targeted, triggered drug delivery to tumor and biofilm microenvironments.
    Benoit DS; Koo H
    Nanomedicine (Lond); 2016 Apr; 11(8):873-9. PubMed ID: 26987892
    [No Abstract]   [Full Text] [Related]  

  • 67. Effects of hypoxia and nanocarrier size on pH-responsive nano-delivery system to solid tumors.
    Soltani M; Souri M; Moradi Kashkooli F
    Sci Rep; 2021 Sep; 11(1):19350. PubMed ID: 34588504
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Transferrin-Conjugated Nanocarriers as Active-Targeted Drug Delivery Platforms for Cancer Therapy.
    Nogueira-Librelotto DR; Codevilla CF; Farooqi A; Rolim CM
    Curr Pharm Des; 2017; 23(3):454-466. PubMed ID: 27784246
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment.
    Dai Y; Xu C; Sun X; Chen X
    Chem Soc Rev; 2017 Jun; 46(12):3830-3852. PubMed ID: 28516983
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Polymeric Nanocarriers: A New Horizon for the Effective Management of Breast Cancer.
    Khan I; Kumar H; Mishra G; Gothwal A; Kesharwani P; Gupta U
    Curr Pharm Des; 2017; 23(35):5315-5326. PubMed ID: 28875848
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nanocarriers in cancer clinical practice: a pharmacokinetic issue.
    Giodini L; Re FL; Campagnol D; Marangon E; Posocco B; Dreussi E; Toffoli G
    Nanomedicine; 2017 Feb; 13(2):583-599. PubMed ID: 27520727
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bioreducible shell-cross-linked hyaluronic acid nanoparticles for tumor-targeted drug delivery.
    Han HS; Thambi T; Choi KY; Son S; Ko H; Lee MC; Jo DG; Chae YS; Kang YM; Lee JY; Park JH
    Biomacromolecules; 2015 Feb; 16(2):447-56. PubMed ID: 25565417
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Review of Pharmacological Treatment Options for Lung Cancer: Emphasis on Novel Nanotherapeutics and Associated Toxicity.
    England CG; Ng CF; van Berkel V; Frieboes HB
    Curr Drug Targets; 2015; 16(10):1057-87. PubMed ID: 25944016
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Stimuli-sensitive nanopreparations for combination cancer therapy.
    Jhaveri A; Deshpande P; Torchilin V
    J Control Release; 2014 Sep; 190():352-70. PubMed ID: 24818767
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chemotherapeutic drug delivery by tumoral extracellular matrix targeting.
    Raavé R; van Kuppevelt TH; Daamen WF
    J Control Release; 2018 Mar; 274():1-8. PubMed ID: 29382546
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Extravasation of polymeric nanomedicines across tumor vasculature.
    Danquah MK; Zhang XA; Mahato RI
    Adv Drug Deliv Rev; 2011 Jul; 63(8):623-39. PubMed ID: 21144874
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach.
    Taylor S; Spugnini EP; Assaraf YG; Azzarito T; Rauch C; Fais S
    Drug Resist Updat; 2015 Nov; 23():69-78. PubMed ID: 26341193
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biodegradable calcium phosphate nanoparticles for cancer therapy.
    Khalifehzadeh R; Arami H
    Adv Colloid Interface Sci; 2020 May; 279():102157. PubMed ID: 32330734
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics.
    Bose RJ; Paulmurugan R; Moon J; Lee SH; Park H
    Drug Discov Today; 2018 Apr; 23(4):891-899. PubMed ID: 29426004
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ratiometric drug delivery using non-liposomal nanocarriers as an approach to increase efficacy and safety of combination chemotherapy.
    Franco MS; Oliveira MC
    Biomed Pharmacother; 2017 Dec; 96():584-595. PubMed ID: 29035823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.