BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23649538)

  • 21. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes.
    Karlsson HL; Cronholm P; Gustafsson J; Möller L
    Chem Res Toxicol; 2008 Sep; 21(9):1726-32. PubMed ID: 18710264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell-based cytotoxicity assays for engineered nanomaterials safety screening: exposure of adipose derived stromal cells to titanium dioxide nanoparticles.
    Xu Y; Hadjiargyrou M; Rafailovich M; Mironava T
    J Nanobiotechnology; 2017 Jul; 15(1):50. PubMed ID: 28693576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental and health effects of nanomaterials in nanotextiles and façade coatings.
    Som C; Wick P; Krug H; Nowack B
    Environ Int; 2011 Aug; 37(6):1131-42. PubMed ID: 21397331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Cultivation Modality and Barrier Maturity Modulate the Toxicity of Industrial Zinc Oxide and Titanium Dioxide Nanoparticles on Nasal, Buccal, Bronchial, and Alveolar Mucosa Cell-Derived Barrier Models.
    Stuetz H; Reihs EI; Neuhaus W; Pflüger M; Hundsberger H; Ertl P; Resch C; Bauer G; Povoden G; Rothbauer M
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential.
    Gangwal S; Brown JS; Wang A; Houck KA; Dix DJ; Kavlock RJ; Hubal EA
    Environ Health Perspect; 2011 Nov; 119(11):1539-46. PubMed ID: 21788197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures?
    Warheit DB; Sayes CM; Reed KL
    Environ Sci Technol; 2009 Oct; 43(20):7939-45. PubMed ID: 19921917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inflammatory response in human alveolar epithelial cells after TiO
    Jiménez-Chávez A; Solorio-Rodríguez A; Escamilla-Rivera V; Leseman D; Morales-Rubio R; Uribe-Ramírez M; Campos-Villegas L; Medina-Ramírez IE; Arreola-Mendoza L; Cassee FR; De Vizcaya-Ruiz A
    Environ Toxicol Pharmacol; 2021 Aug; 86():103654. PubMed ID: 33823299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Group II innate lymphoid cells and microvascular dysfunction from pulmonary titanium dioxide nanoparticle exposure.
    Abukabda AB; McBride CR; Batchelor TP; Goldsmith WT; Bowdridge EC; Garner KL; Friend S; Nurkiewicz TR
    Part Fibre Toxicol; 2018 Nov; 15(1):43. PubMed ID: 30413212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in cytotoxic, genotoxic, and inflammatory response of bronchial and alveolar human lung epithelial cells to pristine and COOH-functionalized multiwalled carbon nanotubes.
    Ursini CL; Cavallo D; Fresegna AM; Ciervo A; Maiello R; Buresti G; Casciardi S; Bellucci S; Iavicoli S
    Biomed Res Int; 2014; 2014():359506. PubMed ID: 25147797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ZnO nanoparticles and organic chemical UV-filters are equally well tolerated by human immune cells.
    O'Keefe SJ; Feltis BN; Piva TJ; Turney TW; Wright PF
    Nanotoxicology; 2016 Nov; 10(9):1287-96. PubMed ID: 27345703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping differential cellular protein response of mouse alveolar epithelial cells to multi-walled carbon nanotubes as a function of atomic layer deposition coating.
    Hilton GM; Taylor AJ; Hussain S; Dandley EC; Griffith EH; Garantziotis S; Parsons GN; Bonner JC; Bereman MS
    Nanotoxicology; 2017 Apr; 11(3):313-326. PubMed ID: 28277982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition.
    Yang H; Liu C; Yang D; Zhang H; Xi Z
    J Appl Toxicol; 2009 Jan; 29(1):69-78. PubMed ID: 18756589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statins repress needle-like carbon nanotube- or cholesterol crystal-stimulated IL-1β production by inhibiting the uptake of crystals by macrophages.
    Cui H; Soga K; Tamehiro N; Adachi R; Hachisuka A; Hirose A; Kondo K; Nishimaki-Mogami T
    Biochem Pharmacol; 2021 Jun; 188():114580. PubMed ID: 33930349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns.
    Tilton SC; Karin NJ; Tolic A; Xie Y; Lai X; Hamilton RF; Waters KM; Holian A; Witzmann FA; Orr G
    Nanotoxicology; 2014 Aug; 8(5):533-48. PubMed ID: 23659652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models.
    Hamilton RF; Xiang C; Li M; Ka I; Yang F; Ma D; Porter DW; Wu N; Holian A
    Inhal Toxicol; 2013 Mar; 25(4):199-210. PubMed ID: 23480196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung.
    Wang X; Xia T; Ntim SA; Ji Z; Lin S; Meng H; Chung CH; George S; Zhang H; Wang M; Li N; Yang Y; Castranova V; Mitra S; Bonner JC; Nel AE
    ACS Nano; 2011 Dec; 5(12):9772-87. PubMed ID: 22047207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B cells and subsequent biological response.
    Haniu H; Saito N; Matsuda Y; Tsukahara T; Maruyama K; Usui Y; Aoki K; Takanashi S; Kobayashi S; Nomura H; Okamoto M; Shimizu M; Kato H
    Toxicol In Vitro; 2013 Sep; 27(6):1679-85. PubMed ID: 23648666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of acute systemic administration of TiO2, ZnO, SiO2, and Ag nanoparticles on hemodynamics, hemostasis and leukocyte recruitment.
    Haberl N; Hirn S; Holzer M; Zuchtriegel G; Rehberg M; Krombach F
    Nanotoxicology; 2015; 9(8):963-71. PubMed ID: 25670207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modification of nano-silver bioactivity by adsorption on carbon nanotubes and graphene oxide.
    Hamilton RF; Wu Z; Thakkar M; Holian A; Mitra S
    Inhal Toxicol; 2018; 30(11-12):429-438. PubMed ID: 30618316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells.
    Kim IS; Baek M; Choi SJ
    J Nanosci Nanotechnol; 2010 May; 10(5):3453-8. PubMed ID: 20358977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.