These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23649751)

  • 41. Stronger predation intensity and impact on prey communities in the tropics.
    Freestone AL; Torchin ME; Jurgens LJ; Bonfim M; López DP; Repetto MF; Schlöder C; Sewall BJ; Ruiz GM
    Ecology; 2021 Aug; 102(8):e03428. PubMed ID: 34105781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Short-term apparent mutualism drives responses of aquatic prey to increasing productivity.
    Chaguaceda F; Scharnweber K; Dalman E; Tranvik LJ; Eklöv P
    J Anim Ecol; 2021 Apr; 90(4):834-845. PubMed ID: 33340096
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interactions between benthic predators and zooplanktonic prey are affected by turbulent waves.
    Robinson HE; Finelli CM; Koehl MA
    Integr Comp Biol; 2013 Nov; 53(5):810-20. PubMed ID: 23942646
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Importance of prey size on investigating prey availability of larval fishes.
    Huang YH; Tao HH; Gong GC; Hsieh CH
    PLoS One; 2021; 16(5):e0251344. PubMed ID: 34003828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatially correlated recruitment of a marine predator and its prey shapes the large-scale pattern of density-dependent prey mortality.
    White JW
    Ecol Lett; 2007 Nov; 10(11):1054-65. PubMed ID: 17692098
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Eco-evolution in size-structured ecosystems: simulation case study of rapid morphological changes in alewife.
    Kang JK; Thibert-Plante X
    BMC Evol Biol; 2017 Feb; 17(1):58. PubMed ID: 28241737
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prey-driven control of predator assemblages: zooplankton abundance drives aquatic beetle colonization.
    Pintar MR; Resetarits WJ
    Ecology; 2017 Aug; 98(8):2201-2215. PubMed ID: 28574151
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cascading top-down effects of changing oceanic predator abundances.
    Baum JK; Worm B
    J Anim Ecol; 2009 Jul; 78(4):699-714. PubMed ID: 19298616
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Disturbance-mediated consumer assemblages determine fish community structure and moderate top-down influences through bottom-up constraints.
    Jellyman PG; McIntosh AR
    J Anim Ecol; 2020 May; 89(5):1175-1189. PubMed ID: 31856307
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study.
    Klecka J; Boukal DS
    J Anim Ecol; 2013 Sep; 82(5):1031-41. PubMed ID: 23869526
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients.
    Elmhagen B; Ludwig G; Rushton SP; Helle P; Lindén H
    J Anim Ecol; 2010 Jul; 79(4):785-94. PubMed ID: 20337755
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential support of lake food webs by three types of terrestrial organic carbon.
    Cole JJ; Carpenter SR; Pace ML; Van de Bogert MC; Kitchell JL; Hodgson JR
    Ecol Lett; 2006 May; 9(5):558-68. PubMed ID: 16643301
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental evidence that phenotypic divergence in predators drives community divergence in prey.
    Palkovacs EP; Post DM
    Ecology; 2009 Feb; 90(2):300-5. PubMed ID: 19323211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bending the rules: exploitation of allochthonous resources by a top-predator modifies size-abundance scaling in stream food webs.
    Perkins DM; Durance I; Edwards FK; Grey J; Hildrew AG; Jackson M; Jones JI; Lauridsen RB; Layer-Dobra K; Thompson MSA; Woodward G
    Ecol Lett; 2018 Dec; 21(12):1771-1780. PubMed ID: 30257275
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prey dispersal rate affects prey species composition and trait diversity in response to multiple predators in metacommunities.
    Howeth JG; Leibold MA
    J Anim Ecol; 2010 Sep; 79(5):1000-11. PubMed ID: 20584098
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes.
    Higham TE; Stewart WJ; Wainwright PC
    Integr Comp Biol; 2015 Jul; 55(1):6-20. PubMed ID: 25980563
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fear Mediates Trophic Cascades: Nonconsumptive Effects of Predators Drive Aquatic Ecosystem Function.
    Breviglieri CPB; Oliveira PS; Romero GQ
    Am Nat; 2017 May; 189(5):490-500. PubMed ID: 28410025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Responses to river inundation pressures control prey selection of riparian beetles.
    O'Callaghan MJ; Hannah DM; Boomer I; Williams M; Sadler JP
    PLoS One; 2013; 8(4):e61866. PubMed ID: 23613958
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Resource partitioning among avian predators of the Arctic tundra.
    Seyer Y; Gauthier G; Fauteux D; Therrien JF
    J Anim Ecol; 2020 Dec; 89(12):2934-2945. PubMed ID: 32965060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predation and landscape characteristics independently affect reef fish community organization.
    Stier AC; Hanson KM; Holbrook SJ; Schmitt RJ; Brooks AJ
    Ecology; 2014 May; 95(5):1294-307. PubMed ID: 25000761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.