These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 23649981)
1. Efficient hydrogen liberation from formic acid catalyzed by a well-defined iron pincer complex under mild conditions. Zell T; Butschke B; Ben-David Y; Milstein D Chemistry; 2013 Jun; 19(25):8068-72. PubMed ID: 23649981 [TBL] [Abstract][Full Text] [Related]
2. Iron-catalyzed hydrogen production from formic acid. Boddien A; Loges B; Gärtner F; Torborg C; Fumino K; Junge H; Ludwig R; Beller M J Am Chem Soc; 2010 Jul; 132(26):8924-34. PubMed ID: 20550131 [TBL] [Abstract][Full Text] [Related]
3. Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions. Bi QY; Du XL; Liu YM; Cao Y; He HY; Fan KN J Am Chem Soc; 2012 May; 134(21):8926-33. PubMed ID: 22568664 [TBL] [Abstract][Full Text] [Related]
4. Efficient dehydrogenation of formic acid using an iron catalyst. Boddien A; Mellmann D; Gärtner F; Jackstell R; Junge H; Dyson PJ; Laurenczy G; Ludwig R; Beller M Science; 2011 Sep; 333(6050):1733-6. PubMed ID: 21940890 [TBL] [Abstract][Full Text] [Related]
5. Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions. Alberico E; Sponholz P; Cordes C; Nielsen M; Drexler HJ; Baumann W; Junge H; Beller M Angew Chem Int Ed Engl; 2013 Dec; 52(52):14162-6. PubMed ID: 24339396 [TBL] [Abstract][Full Text] [Related]
6. Selective formic acid decomposition for high-pressure hydrogen generation: a mechanistic study. Fellay C; Yan N; Dyson PJ; Laurenczy G Chemistry; 2009; 15(15):3752-60. PubMed ID: 19229942 [TBL] [Abstract][Full Text] [Related]
8. Controlling the equilibrium of formic acid with hydrogen and carbon dioxide using ionic liquid. Yasaka Y; Wakai C; Matubayasi N; Nakahara M J Phys Chem A; 2010 Mar; 114(10):3510-5. PubMed ID: 20166690 [TBL] [Abstract][Full Text] [Related]
9. Unusually large tunneling effect on highly efficient generation of hydrogen and hydrogen isotopes in pH-selective decomposition of formic acid catalyzed by a heterodinuclear iridium-ruthenium complex in water. Fukuzumi S; Kobayashi T; Suenobu T J Am Chem Soc; 2010 Feb; 132(5):1496-7. PubMed ID: 20085352 [TBL] [Abstract][Full Text] [Related]
10. Modularly designed transition metal PNP and PCP pincer complexes based on aminophosphines: synthesis and catalytic applications. Benito-Garagorri D; Kirchner K Acc Chem Res; 2008 Feb; 41(2):201-13. PubMed ID: 18211031 [TBL] [Abstract][Full Text] [Related]
11. Pincer-type Heck catalysts and mechanisms based on Pd(IV) intermediates: a computational study. Blacque O; Frech CM Chemistry; 2010 Feb; 16(5):1521-31. PubMed ID: 20024984 [TBL] [Abstract][Full Text] [Related]
12. Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst. Bielinski EA; Lagaditis PO; Zhang Y; Mercado BQ; Würtele C; Bernskoetter WH; Hazari N; Schneider S J Am Chem Soc; 2014 Jul; 136(29):10234-7. PubMed ID: 24999607 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen evolution from formic acid in an ionic liquid solvent: a mechanistic study by ab initio molecular dynamics. Bhargava BL; Yasaka Y; Klein ML J Phys Chem B; 2011 Dec; 115(48):14136-40. PubMed ID: 21774513 [TBL] [Abstract][Full Text] [Related]
14. A palladium NNC-pincer complex: an efficient catalyst for allylic arylation at parts per billion levels. Hamasaka G; Sakurai F; Uozumi Y Chem Commun (Camb); 2015 Mar; 51(18):3886-8. PubMed ID: 25656282 [TBL] [Abstract][Full Text] [Related]
15. Matrix reorganization with intramolecular tunneling of H atom: formic acid in Ar matrix. Trakhtenberg LI; Fokeyev AA; Zyubin AS; Mebel AM; Lin SH J Chem Phys; 2009 Apr; 130(14):144502. PubMed ID: 19368456 [TBL] [Abstract][Full Text] [Related]
16. Stereoselective Pincer-complex catalyzed C-H functionalization of benzyl nitriles under mild conditions. An efficient route to beta-aminonitriles. Aydin J; Conrad CS; Szabó KJ Org Lett; 2008 Nov; 10(22):5175-8. PubMed ID: 18954067 [TBL] [Abstract][Full Text] [Related]
17. Palladium-pincer complex catalyzed C-C coupling of allyl nitriles with tosyl imines via regioselective allylic C-H bond functionalization. Aydin J; Szabó KJ Org Lett; 2008 Jul; 10(13):2881-4. PubMed ID: 18529065 [TBL] [Abstract][Full Text] [Related]
18. Pincer complex-catalyzed allylation of aldehyde and imine substrates via nucleophilic eta1-allyl palladium intermediates. Solin N; Kjellgren J; Szabó KJ J Am Chem Soc; 2004 Jun; 126(22):7026-33. PubMed ID: 15174873 [TBL] [Abstract][Full Text] [Related]
19. Palladium pincer complex-catalyzed trimethyltin substitution of functionalized propargylic substrates. An efficient route to propargyl- and allenyl-stannanes. Kjellgren J; Sundén H; Szabó KJ J Am Chem Soc; 2004 Jan; 126(2):474-5. PubMed ID: 14719938 [TBL] [Abstract][Full Text] [Related]
20. Negishi cross-coupling reaction catalyzed by an aliphatic, phosphine based pincer complex of palladium. biaryl formation via cationic pincer-type Pd(IV) intermediates. Gerber R; Blacque O; Frech CM Dalton Trans; 2011 Sep; 40(35):8996-9003. PubMed ID: 21691648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]