BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23650022)

  • 1. Intervertebral disc internal deformation measured by displacements under applied loading with MRI at 3T.
    Chan DD; Neu CP
    Magn Reson Med; 2014 Mar; 71(3):1231-7. PubMed ID: 23650022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of multi-parametric MRI to the compressive state of the isolated intervertebral discs.
    Manac'h YG; Périé D; Gilbert G; Beaudoin G
    Magn Reson Imaging; 2013 Jan; 31(1):36-43. PubMed ID: 22902468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive high resolution mechanical strain maps of the spine intervertebral disc using nonrigid registration of magnetic resonance images.
    Reiter DA; Fathallah FA; Farouki RT; Walton JH
    J Biomech; 2012 May; 45(8):1534-9. PubMed ID: 22503578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modified quantitative MRI analysis method to identify the direction of shift in lumbar disc hydration over the axial MRI in response to side-bending.
    Takasaki H; Lim EC
    Biomed Mater Eng; 2015; 25(3):327-34. PubMed ID: 26407118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of intervertebral disc displacements measured under applied loading with MRI at 3.0 T and 9.4 T.
    Chan DD; Gossett PC; Butz KD; Nauman EA; Neu CP
    J Biomech; 2014 Aug; 47(11):2801-6. PubMed ID: 24968943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution determination of soft tissue deformations using MRI and first-order texture correlation.
    Gilchrist CL; Xia JQ; Setton LA; Hsu EW
    IEEE Trans Med Imaging; 2004 May; 23(5):546-53. PubMed ID: 15147008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of creep on human lumbar intervertebral disk impact mechanics.
    Jamison D; Marcolongo MS
    J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated system for real-time detection of stiff masses with a single compression.
    Fahmy AS; Krieger A; Osman NF
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1286-93. PubMed ID: 16830933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward an MRI-based method to measure non-uniform cartilage deformation: an MRI-cyclic loading apparatus system and steady-state cyclic displacement of articular cartilage under compressive loading.
    Neu CP; Hull ML
    J Biomech Eng; 2003 Apr; 125(2):180-8. PubMed ID: 12751279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery.
    Johannessen W; Vresilovic EJ; Wright AC; Elliott DM
    Ann Biomed Eng; 2004 Jan; 32(1):70-6. PubMed ID: 14964723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging.
    O'Connell GD; Johannessen W; Vresilovic EJ; Elliott DM
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2860-8. PubMed ID: 18246009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Displacement encoding for the measurement of cartilage deformation.
    Neu CP; Walton JH
    Magn Reson Med; 2008 Jan; 59(1):149-55. PubMed ID: 18050342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation.
    Malandrino A; Planell JA; Lacroix D
    J Biomech; 2009 Dec; 42(16):2780-8. PubMed ID: 19796766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multibody modelling approach to determine load sharing between passive elements of the lumbar spine.
    Abouhossein A; Weisse B; Ferguson SJ
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):527-37. PubMed ID: 21128134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI-based technique for determining nonuniform deformations throughout the volume of articular cartilage explants.
    Neu CP; Hull ML; Walton JH; Buonocore MH
    Magn Reson Med; 2005 Feb; 53(2):321-8. PubMed ID: 15678528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of posture and prolonged cyclic compressive loading on vertebral joint mechanics.
    Gooyers CE; McMillan RD; Howarth SJ; Callaghan JP
    Spine (Phila Pa 1976); 2012 Aug; 37(17):E1023-9. PubMed ID: 22472807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient and microscale deformations and strains measured under exogenous loading by noninvasive magnetic resonance.
    Chan DD; Neu CP
    PLoS One; 2012; 7(3):e33463. PubMed ID: 22448245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic measurement of depth-dependent transient behaviors of articular cartilage under compression.
    Zheng YP; Niu HJ; Arthur Mak FT; Huang YP
    J Biomech; 2005 Sep; 38(9):1830-7. PubMed ID: 16023470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanobiology of the intervertebral disc.
    Lotz JC; Hsieh AH; Walsh AL; Palmer EI; Chin JR
    Biochem Soc Trans; 2002 Nov; 30(Pt 6):853-8. PubMed ID: 12440932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.