These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 23650043)
1. On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. Houmard M; Fu Q; Genet M; Saiz E; Tomsia AP J Biomed Mater Res B Appl Biomater; 2013 Oct; 101(7):1233-42. PubMed ID: 23650043 [TBL] [Abstract][Full Text] [Related]
2. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. Miranda P; Pajares A; Saiz E; Tomsia AP; Guiberteau F J Biomed Mater Res A; 2008 Apr; 85(1):218-27. PubMed ID: 17688280 [TBL] [Abstract][Full Text] [Related]
3. Structure degradation and strength changes of sintered calcium phosphate bone scaffolds with different phase structures during simulated biodegradation in vitro. Stastny P; Sedlacek R; Suchy T; Lukasova V; Rampichova M; Trunec M Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():544-553. PubMed ID: 30948091 [TBL] [Abstract][Full Text] [Related]
4. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
5. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404 [TBL] [Abstract][Full Text] [Related]
6. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Martínez-Vázquez FJ; Perera FH; Miranda P; Pajares A; Guiberteau F Acta Biomater; 2010 Nov; 6(11):4361-8. PubMed ID: 20566307 [TBL] [Abstract][Full Text] [Related]
7. Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications. Shavandi A; Bekhit Ael-D; Ali MA; Sun Z; Gould M Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():481-93. PubMed ID: 26249618 [TBL] [Abstract][Full Text] [Related]
8. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Diaz-Gomez L; Elizondo ME; Kontoyiannis PD; Koons GL; Dacunha-Marinho B; Zhang X; Ajayan P; Jansen JA; Melchiorri AJ; Mikos AG Tissue Eng Part C Methods; 2020 Jun; 26(6):292-305. PubMed ID: 32326874 [TBL] [Abstract][Full Text] [Related]
9. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935 [TBL] [Abstract][Full Text] [Related]
10. [Preparation of porous ceramic macro-tubes scaffold]. Zheng W Zhongguo Yi Liao Qi Xie Za Zhi; 2011 May; 35(3):185-8. PubMed ID: 21954576 [TBL] [Abstract][Full Text] [Related]
11. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260 [TBL] [Abstract][Full Text] [Related]
13. Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Franco J; Hunger P; Launey ME; Tomsia AP; Saiz E Acta Biomater; 2010 Jan; 6(1):218-28. PubMed ID: 19563923 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering. Thomas A; Bera J J Biomater Sci Polym Ed; 2019 May; 30(7):561-579. PubMed ID: 30801229 [TBL] [Abstract][Full Text] [Related]
15. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776 [TBL] [Abstract][Full Text] [Related]
16. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering. Chowdhury S; Thomas V; Dean D; Catledge SA; Vohra YK J Nanosci Nanotechnol; 2005 Nov; 5(11):1816-20. PubMed ID: 16433415 [TBL] [Abstract][Full Text] [Related]
17. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering. Yang K; Zhang J; Ma X; Ma Y; Kan C; Ma H; Li Y; Yuan Y; Liu C Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():37-47. PubMed ID: 26249563 [TBL] [Abstract][Full Text] [Related]
18. Microstructure, mechanical property and corrosion behavior of interpenetrating (HA+β-TCP)/MgCa composite fabricated by suction casting. Wang X; Dong LH; Li JT; Li XL; Ma XL; Zheng YF Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4266-73. PubMed ID: 23910342 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate. Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565 [TBL] [Abstract][Full Text] [Related]
20. Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics. Draenert M; Draenert A; Draenert K Microsc Res Tech; 2013 Apr; 76(4):370-80. PubMed ID: 23390042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]