These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23650074)

  • 1. Variable selection in monotone single-index models via the adaptive LASSO.
    Foster JC; Taylor JM; Nan B
    Stat Med; 2013 Sep; 32(22):3944-54. PubMed ID: 23650074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partially linear monotone methods with automatic variable selection and monotonicity direction discovery.
    Engebretsen S; Glad IK
    Stat Med; 2020 Nov; 39(25):3549-3568. PubMed ID: 32851696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of empirical likelihood to calibrate auxiliary information in partly linear monotone regression models.
    Chen B; Qin J
    Stat Med; 2014 May; 33(10):1713-22. PubMed ID: 24323567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient penalized estimation approach for semiparametric linear transformation models with interval-censored data.
    Lu M; Liu Y; Li CS; Sun J
    Stat Med; 2022 May; 41(10):1829-1845. PubMed ID: 35099078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Penalized variable selection for accelerated failure time models with random effects.
    Park E; Ha ID
    Stat Med; 2019 Feb; 38(5):878-892. PubMed ID: 30411376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regularized estimation in the accelerated failure time model with high-dimensional covariates.
    Huang J; Ma S; Xie H
    Biometrics; 2006 Sep; 62(3):813-20. PubMed ID: 16984324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial likelihood estimation of isotonic proportional hazards models.
    Chung Y; Ivanova A; Hudgens MG; Fine JP
    Biometrika; 2018 Mar; 105(1):133-148. PubMed ID: 29808076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sparse kernel learning with LASSO and Bayesian inference algorithm.
    Gao J; Kwan PW; Shi D
    Neural Netw; 2010 Mar; 23(2):257-64. PubMed ID: 19604671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Penalized Least Squares for Structural Equation Modeling with Ordinal Responses.
    Huang PH
    Multivariate Behav Res; 2022; 57(2-3):279-297. PubMed ID: 32990059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating methods for Lasso selective inference in biomedical research: a comparative simulation study.
    Kammer M; Dunkler D; Michiels S; Heinze G
    BMC Med Res Methodol; 2022 Jul; 22(1):206. PubMed ID: 35883041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian variable selection and estimation in semiparametric joint models of multivariate longitudinal and survival data.
    Tang AM; Zhao X; Tang NS
    Biom J; 2017 Jan; 59(1):57-78. PubMed ID: 27667731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Adaptive Lasso method for parameter's estimation and variable selection in high-dimensional sparse models.
    Wahid A; Khan DM; Hussain I
    PLoS One; 2017; 12(8):e0183518. PubMed ID: 28846717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable selection for binary spatial regression: Penalized quasi-likelihood approach.
    Feng W; Sarkar A; Lim CY; Maiti T
    Biometrics; 2016 Dec; 72(4):1164-1172. PubMed ID: 27061299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pool adjacent violators algorithm-assisted learning with application on estimating optimal individualized treatment regimes.
    Chen B; Yuan A; Qin J
    Biometrics; 2022 Dec; 78(4):1475-1488. PubMed ID: 34181761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-dimensional generalized propensity score with application to omics data.
    Gao Q; Zhang Y; Liang J; Sun H; Wang T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible variable selection for recovering sparsity in nonadditive nonparametric models.
    Fang Z; Kim I; Schaumont P
    Biometrics; 2016 Dec; 72(4):1155-1163. PubMed ID: 27077330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-dimensional Cox models: the choice of penalty as part of the model building process.
    Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U
    Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying optimal biomarker combinations for treatment selection through randomized controlled trials.
    Huang Y
    Clin Trials; 2015 Aug; 12(4):348-56. PubMed ID: 25948620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Path consistent model selection in additive risk model via Lasso.
    Leng C; Ma S
    Stat Med; 2007 Sep; 26(20):3753-70. PubMed ID: 17309043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient estimation of a linear transformation model for current status data via penalized splines.
    Lu M; Liu Y; Li CS
    Stat Methods Med Res; 2020 Jan; 29(1):3-14. PubMed ID: 30592240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.