These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23650076)

  • 1. Constitutive formulations for the mechanical investigation of colonic tissues.
    Carniel EL; Gramigna V; Fontanella CG; Stefanini C; Natali AN
    J Biomed Mater Res A; 2014 May; 102(5):1243-54. PubMed ID: 23650076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the anisotropic mechanical behaviour of colonic tissues: experimental activity and constitutive formulation.
    Carniel EL; Gramigna V; Fontanella CG; Frigo A; Stefanini C; Rubini A; Natali AN
    Exp Physiol; 2014 May; 99(5):759-71. PubMed ID: 24486449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the mechanical behaviour of the foot skin.
    Fontanella CG; Carniel EL; Forestiero A; Natali AN
    Skin Res Technol; 2014 Nov; 20(4):445-52. PubMed ID: 24527962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis.
    Natali AN; Carniel EL; Gregersen H
    Med Eng Phys; 2009 Nov; 31(9):1056-62. PubMed ID: 19651531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive formulation and numerical analysis of the biomechanical behaviour of forefoot plantar soft tissue.
    Fontanella CG; Favaretto E; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):942-51. PubMed ID: 25313025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the biomechanical behaviour of hindfoot ligaments.
    Forestiero A; Carniel EL; Venturato C; Natali AN
    Proc Inst Mech Eng H; 2013 Jun; 227(6):683-92. PubMed ID: 23636750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation of the biomechanics of urethral tissues and structures.
    Natali AN; Carniel EL; Frigo A; Pavan PG; Todros S; Pachera P; Fontanella CG; Rubini A; Cavicchioli L; Avital Y; De Benedictis GM
    Exp Physiol; 2016 May; 101(5):641-56. PubMed ID: 26864993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive formulation and analysis of heel pad tissues mechanics.
    Natali AN; Fontanella CG; Carniel EL
    Med Eng Phys; 2010 Jun; 32(5):516-22. PubMed ID: 20304698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled experimental and computational approach to stomach biomechanics: Towards a validated characterization of gastric tissues mechanical properties.
    Toniolo I; Fontanella CG; Foletto M; Carniel EL
    J Mech Behav Biomed Mater; 2022 Jan; 125():104914. PubMed ID: 34715641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational tools for the analysis of mechanical functionality of gastrointestinal structures.
    Carniel EL; Fontanella CG; Polese L; Merigliano S; Natali AN
    Technol Health Care; 2013; 21(3):271-83. PubMed ID: 23792800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of hyperelastic constitutive models for colonic tissue fitted to multiaxial experimental testing.
    Puértolas S; Peña E; Herrera A; Ibarz E; Gracia L
    J Mech Behav Biomed Mater; 2020 Feb; 102():103507. PubMed ID: 31877516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the structural behaviour of colonic segments by inflation tests: Experimental activity and physio-mechanical model.
    Carniel EL; Mencattelli M; Bonsignori G; Fontanella CG; Frigo A; Rubini A; Stefanini C; Natali AN
    Proc Inst Mech Eng H; 2015 Nov; 229(11):794-803. PubMed ID: 26396226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bladder tissue biomechanical behavior: Experimental tests and constitutive formulation.
    Natali AN; Audenino AL; Artibani W; Fontanella CG; Carniel EL; Zanetti EM
    J Biomech; 2015 Sep; 48(12):3088-96. PubMed ID: 26253759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.
    Caner FC; Guo Z; Moran B; Bazant ZP; Carol I
    J Biomech Eng; 2007 Oct; 129(5):632-41. PubMed ID: 17887888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental-numerical analysis of minipig's multi-rooted teeth.
    Natali AN; Carniel EL; Pavan PG; Bourauel C; Ziegler A; Keilig L
    J Biomech; 2007; 40(8):1701-8. PubMed ID: 17074355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutive modeling of the passive inflation-extension behavior of the swine colon.
    Patel B; Chen H; Ahuja A; Krieger JF; Noblet J; Chambers S; Kassab GS
    J Mech Behav Biomed Mater; 2018 Jan; 77():176-186. PubMed ID: 28922650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin.
    Groves RB; Coulman SA; Birchall JC; Evans SL
    J Mech Behav Biomed Mater; 2013 Feb; 18():167-80. PubMed ID: 23274398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation and validation of constitutive relations for human dermis mechanical response.
    Aldieri A; Terzini M; Bignardi C; Zanetti EM; Audenino AL
    Med Biol Eng Comput; 2018 Nov; 56(11):2083-2093. PubMed ID: 29777504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameter optimization for the visco-hyperelastic constitutive model of tendon using FEM.
    Tang CY; Ng GY; Wang ZW; Tsui CP; Zhang G
    Biomed Mater Eng; 2011; 21(1):9-24. PubMed ID: 21537060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.