These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23650076)

  • 21. Characterisation of human penile tissue properties using experimental testing combined with multi-target inverse finite element modelling.
    Akbarzadeh Khorshidi M; Bose S; Watschke B; Mareena E; Lally C
    Acta Biomater; 2024 Aug; 184():226-238. PubMed ID: 38945188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects.
    Limbert G; Middleton J; Laizans J; Dobelis M; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical characterization of porcine liver properties for computational simulation of indentation on cancerous tissue.
    Yang Y; Li K; Sommer G; Yung KL; Holzapfel GA
    Math Med Biol; 2020 Dec; 37(4):469-490. PubMed ID: 32424396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anisotropic constitutive equations and experimental tensile behavior of brain tissue.
    Velardi F; Fraternali F; Angelillo M
    Biomech Model Mechanobiol; 2006 Mar; 5(1):53-61. PubMed ID: 16315049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A transversally isotropic elasto-damage constitutive model for the periodontal ligament.
    Natali AN; Pavan PG; Carniel EL; Dorow C
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):329-36. PubMed ID: 14675953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Implementation of a new constitutive model for abdominal muscles.
    Tuset L; Fortuny G; Herrero J; Puigjaner D; López JM
    Comput Methods Programs Biomed; 2019 Oct; 179():104988. PubMed ID: 31443865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational Models for the Mechanical Investigation of Stomach Tissues and Structure.
    Fontanella CG; Salmaso C; Toniolo I; de Cesare N; Rubini A; De Benedictis GM; Carniel EL
    Ann Biomed Eng; 2019 May; 47(5):1237-1249. PubMed ID: 30783831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of carotid plaque tissue properties using an experimental-numerical approach.
    Heiland VM; Forsell C; Roy J; Hedin U; Gasser TC
    J Mech Behav Biomed Mater; 2013 Nov; 27():226-38. PubMed ID: 23790614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical behavior of plantar fat pad in healthy and degenerative foot conditions.
    Fontanella CG; Nalesso F; Carniel EL; Natali AN
    Med Biol Eng Comput; 2016 Apr; 54(4):653-61. PubMed ID: 26272439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue.
    Maher E; Creane A; Lally C; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Aug; 12():9-19. PubMed ID: 22659364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A constitutive model for the mechanical characterization of the plantar fascia.
    Natali AN; Pavan PG; Stecco C
    Connect Tissue Res; 2010 Oct; 51(5):337-46. PubMed ID: 20175692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical behaviour of ankle ligaments: constitutive formulation and numerical modelling.
    Forestiero A; Carniel EL; Natali AN
    Comput Methods Biomech Biomed Engin; 2014; 17(4):395-404. PubMed ID: 22616815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering.
    Sommer G; Schriefl A; Zeindlinger G; Katzensteiner A; Ainödhofer H; Saxena A; Holzapfel GA
    Acta Biomater; 2013 Dec; 9(12):9379-91. PubMed ID: 23933485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical behavior of Hoffa's fat pad in healthy and osteoarthritic conditions: histological and mechanical investigations.
    Fontanella CG; Macchi V; Carniel EL; Frigo A; Porzionato A; Picardi EEE; Favero M; Ruggieri P; de Caro R; Natali AN
    Australas Phys Eng Sci Med; 2018 Sep; 41(3):657-667. PubMed ID: 29943312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical identification of layer-specific properties of mouse carotid arteries using 3D-DIC and a hyperelastic anisotropic constitutive model.
    Badel P; Avril S; Lessner S; Sutton M
    Comput Methods Biomech Biomed Engin; 2012; 15(1):37-48. PubMed ID: 21749226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of biaxial tension tests of soft tissues.
    Bursa J; Zemanek M
    Stud Health Technol Inform; 2008; 133():45-55. PubMed ID: 18376012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical model for healthy and injured ankle ligaments.
    Forestiero A; Carniel EL; Fontanella CG; Natali AN
    Australas Phys Eng Sci Med; 2017 Jun; 40(2):289-295. PubMed ID: 28220401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anisotropic elasto-damage constitutive model for the biomechanical analysis of tendons.
    Natali AN; Pavan PG; Carniel EL; Lucisano ME; Taglialavoro G
    Med Eng Phys; 2005 Apr; 27(3):209-14. PubMed ID: 15694603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.