These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23650121)

  • 1. Controlled fabrication of intermolecular junctions of single-walled carbon nanotube/graphene nanoribbon.
    Yu F; Zhou H; Zhang Z; Wang G; Yang H; Chen M; Tao L; Tang D; He J; Sun L
    Small; 2013 Jul; 9(14):2405-9. PubMed ID: 23650121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled Preparation and Device Application of Sub-5 nm Graphene Nanoribbons and Graphene Nanoribbon/Carbon Nanotube Intramolecular Heterostructures.
    He Z; Wang K; Yan C; Wan L; Zhou Q; Zhang T; Ye X; Zhang Y; Shi F; Jiang S; Zhao J; Wang K; Chen C
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7148-7156. PubMed ID: 36692227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.
    Paulus GL; Wang QH; Ulissi ZW; McNicholas TP; Vijayaraghavan A; Shih CJ; Jin Z; Strano MS
    Small; 2013 Jun; 9(11):1954-63. PubMed ID: 23281165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes.
    Wei D; Xie L; Lee KK; Hu Z; Tan S; Chen W; Sow CH; Chen K; Liu Y; Wee AT
    Nat Commun; 2013; 4():1374. PubMed ID: 23340414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise determination of the threshold diameter for a single-walled carbon nanotube to collapse.
    He M; Dong J; Zhang K; Ding F; Jiang H; Loiseau A; Lehtonen J; Kauppinen EI
    ACS Nano; 2014 Sep; 8(9):9657-63. PubMed ID: 25131158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin single-walled carbon nanotube network framed graphene hybrids.
    Wang R; Hong T; Xu YQ
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5233-8. PubMed ID: 25686199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential electrochemical unzipping of single-walled carbon nanotubes to graphene ribbons revealed by in situ Raman spectroscopy and imaging.
    John R; Shinde DB; Liu L; Ding F; Xu Z; Vijayan C; Pillai VK; Pradeep T
    ACS Nano; 2014 Jan; 8(1):234-42. PubMed ID: 24308315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X; Zhang G; Li B
    J Phys Condens Matter; 2011 Jun; 23(21):215301. PubMed ID: 21555836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions.
    Yao Y; Li Q; Zhang J; Liu R; Jiao L; Zhu YT; Liu Z
    Nat Mater; 2007 Apr; 6(4):283-6. PubMed ID: 17369833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of coupled graphene-nanotube quantum devices.
    Engels S; Weber P; Terrés B; Dauber J; Meyer C; Volk C; Trellenkamp S; Wichmann U; Stampfer C
    Nanotechnology; 2013 Jan; 24(3):035204. PubMed ID: 23263231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in single-walled carbon nanotube chirality during growth and regrowth.
    Zhu W; Rosén A; Bolton K
    J Chem Phys; 2008 Mar; 128(12):124708. PubMed ID: 18376961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging active topological defects in carbon nanotubes.
    Suenaga K; Wakabayashi H; Koshino M; Sato Y; Urita K; Iijima S
    Nat Nanotechnol; 2007 Jun; 2(6):358-60. PubMed ID: 18654307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.
    Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J
    Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen: road to graphane nanoribbons.
    Talyzin AV; Luzan S; Anoshkin IV; Nasibulin AG; Jiang H; Kauppinen EI; Mikoushkin VM; Shnitov VV; Marchenko DE; Noréus D
    ACS Nano; 2011 Jun; 5(6):5132-40. PubMed ID: 21504190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomically resolved single-walled carbon nanotube intramolecular junctions.
    Ouyang M; Huang JL; Cheung CL; Lieber CM
    Science; 2001 Jan; 291(5501):97-100. PubMed ID: 11141554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable growth of one-dimensional graphitic materials: graphene nanoribbons, carbon nanotubes, and nanoribbon/nanotube junctions.
    Lou S; Lyu B; Chen J; Qiu L; Ma S; Shen P; Zhang Z; Xie Y; Liang Q; Watanabe K; Taniguchi T; Ding F; Shi Z
    Sci Rep; 2023 Mar; 13(1):4328. PubMed ID: 36922649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.