BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 23650141)

  • 1. How does SHIP1/2 balance PtdIns(3,4)P2 and does it signal independently of its phosphatase activity?
    Xie J; Erneux C; Pirson I
    Bioessays; 2013 Aug; 35(8):733-43. PubMed ID: 23650141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms controlling membrane recruitment and activation of the autoinhibited SHIP1 inositol 5-phosphatase.
    Waddell GL; Drew EE; Rupp HP; Hansen SD
    J Biol Chem; 2023 Aug; 299(8):105022. PubMed ID: 37423304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of inositol 5-phosphatase activity by the C2 domain of SHIP1 and SHIP2.
    Bradshaw WJ; Kennedy EC; Moreira T; Smith LA; Chalk R; Katis VL; Benesch JLP; Brennan PE; Murphy EJ; Gileadi O
    Structure; 2024 Apr; 32(4):453-466.e6. PubMed ID: 38309262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway.
    Williams ME; Torabinejad J; Cohick E; Parker K; Drake EJ; Thompson JE; Hortter M; Dewald DB
    Plant Physiol; 2005 Jun; 138(2):686-700. PubMed ID: 15923324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the signaling role of PtdIns(4)P at the plasma membrane through H
    Jo SI; Kim S; Lim JM; Rhee SG; Jeong BG; Cha SS; Chang JB; Kang D
    Redox Biol; 2024 May; 71():103097. PubMed ID: 38442648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinase-independent synthesis of 3-phosphorylated phosphoinositides by a phosphotransferase.
    Walpole GFW; Pacheco J; Chauhan N; Clark J; Anderson KE; Abbas YM; Brabant-Kirwan D; Montaño-Rendón F; Liu Z; Zhu H; Brumell JH; Deiters A; Stephens LR; Hawkins PT; Hammond GRV; Grinstein S; Fairn GD
    Nat Cell Biol; 2022 May; 24(5):708-722. PubMed ID: 35484249
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Fernandes S; Meyer ST; Shah JP; Adhikari AA; Kerr WG; Chisholm JD
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500543
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Olufunmilayo EO; Holsinger RMD
    Genes (Basel); 2023 Sep; 14(10):. PubMed ID: 37895194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SHIP1 therapeutic target enablement: Identification and evaluation of inhibitors for the treatment of late-onset Alzheimer's disease.
    Jesudason CD; Mason ER; Chu S; Oblak AL; Javens-Wolfe J; Moussaif M; Durst G; Hipskind P; Beck DE; Dong J; Amarasinghe O; Zhang ZY; Hamdani AK; Singhal K; Mesecar AD; Souza S; Jacobson M; Salvo JD; Soni DM; Kandasamy M; Masters AR; Quinney SK; Doolen S; Huhe H; Rizzo SJS; Lamb BT; Palkowitz AD; Richardson TI
    Alzheimers Dement (N Y); 2023; 9(4):e12429. PubMed ID: 38023622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-Activity Studies on Bis-Sulfonamide SHIP1 Activators.
    Meyer ST; Fernandes S; Anderson RE; Pacherille A; Toms B; Kerr WG; Chisholm JD
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Duplicated zebrafish (Danio rerio) inositol phosphatases inpp5ka and inpp5kb diverged in expression pattern and function.
    Shukla D; Gural BM; Cauley ES; Battula N; Mowla S; Karas BF; Roberts LE; Cavallo L; Turkalj L; Moody SA; Swan LE; Manzini MC
    Dev Genes Evol; 2023 Jun; 233(1):25-34. PubMed ID: 37184573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoinositide Signaling in Immune Cell Migration.
    Kakar R; Ghosh C; Sun Y
    Biomolecules; 2023 Nov; 13(12):. PubMed ID: 38136577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling.
    Li H; Marshall AJ
    Cell Signal; 2015 Sep; 27(9):1789-98. PubMed ID: 26022180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved imaging and preservation of lysosome dynamics using silver nanoparticle-enhanced fluorescence.
    Soha SA; Santhireswaran A; Huq S; Casimir-Powell J; Jenkins N; Hodgson GK; Sugiyama M; Antonescu CN; Impellizzeri S; Botelho RJ
    Mol Biol Cell; 2023 Sep; 34(10):ar96. PubMed ID: 37405751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting SHIP1 and SHIP2 in Cancer.
    Pedicone C; Meyer ST; Chisholm JD; Kerr WG
    Cancers (Basel); 2021 Feb; 13(4):. PubMed ID: 33672717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiorgan failure with abnormal receptor metabolism in mice mimicking Samd9/9L syndromes.
    Nagamachi A; Kanai A; Nakamura M; Okuda H; Yokoyama A; Shinriki S; Matsui H; Inaba T
    J Clin Invest; 2021 Feb; 131(4):. PubMed ID: 33373325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling.
    Shorning BY; Dass MS; Smalley MJ; Pearson HB
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32630372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides.
    Walpole GFW; Grinstein S
    F1000Res; 2020; 9():. PubMed ID: 32494357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IQGAP2 Inhibits Migration and Invasion of Gastric Cancer Cells via Elevating SHIP2 Phosphatase Activity.
    Xu L; Shao Y; Ren L; Liu X; Li Y; Xu J; Ye Y
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of phosphoinositide 5-phosphatases on phosphoinositides in cell function and human disease.
    Ramos AR; Ghosh S; Erneux C
    J Lipid Res; 2019 Feb; 60(2):276-286. PubMed ID: 30194087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.