These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 23650181)
1. Large-scale production of nanographene sheets with a controlled mesoporous architecture as high-performance electrochemical electrode materials. Zhang H; Zhang X; Sun X; Zhang D; Lin H; Wang C; Wang H; Ma Y ChemSusChem; 2013 Jun; 6(6):1084-90. PubMed ID: 23650181 [TBL] [Abstract][Full Text] [Related]
2. An overview of the applications of graphene-based materials in supercapacitors. Huang Y; Liang J; Chen Y Small; 2012 Jun; 8(12):1805-34. PubMed ID: 22514114 [TBL] [Abstract][Full Text] [Related]
3. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594 [TBL] [Abstract][Full Text] [Related]
5. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors. Xu Y; Shi G; Duan X Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764 [TBL] [Abstract][Full Text] [Related]
6. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. Zhao X; Hayner CM; Kung MC; Kung HH ACS Nano; 2011 Nov; 5(11):8739-49. PubMed ID: 21980979 [TBL] [Abstract][Full Text] [Related]
7. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Yu G; Hu L; Vosgueritchian M; Wang H; Xie X; McDonough JR; Cui X; Cui Y; Bao Z Nano Lett; 2011 Jul; 11(7):2905-11. PubMed ID: 21667923 [TBL] [Abstract][Full Text] [Related]
8. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. He Y; Chen W; Li X; Zhang Z; Fu J; Zhao C; Xie E ACS Nano; 2013 Jan; 7(1):174-82. PubMed ID: 23249211 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical sensors and biosensors based on less aggregated graphene. Bo X; Zhou M; Guo L Biosens Bioelectron; 2017 Mar; 89(Pt 1):167-186. PubMed ID: 27161575 [TBL] [Abstract][Full Text] [Related]
10. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. Achilleos DS; Hatton TA J Colloid Interface Sci; 2015 Jun; 447():282-301. PubMed ID: 25711524 [TBL] [Abstract][Full Text] [Related]
12. Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells. Qiu HJ; Guan Y; Luo P; Wang Y Biosens Bioelectron; 2017 Mar; 89(Pt 1):85-95. PubMed ID: 26711357 [TBL] [Abstract][Full Text] [Related]
13. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292 [TBL] [Abstract][Full Text] [Related]
14. Hierarchically nanoperforated graphene as a high performance electrode material for ultracapacitors. Mhamane D; Suryawanshi A; Unni SM; Rode C; Kurungot S; Ogale S Small; 2013 Aug; 9(16):2801-9. PubMed ID: 23606525 [TBL] [Abstract][Full Text] [Related]
15. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices. Yao F; Pham DT; Lee YH ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707 [TBL] [Abstract][Full Text] [Related]
16. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Luo B; Liu S; Zhi L Small; 2012 Mar; 8(5):630-46. PubMed ID: 22121112 [TBL] [Abstract][Full Text] [Related]
18. Nonaqueous lithium-ion capacitors with high energy densities using trigol-reduced graphene oxide nanosheets as cathode-active material. Aravindan V; Mhamane D; Ling WC; Ogale S; Madhavi S ChemSusChem; 2013 Dec; 6(12):2240-4. PubMed ID: 23939711 [TBL] [Abstract][Full Text] [Related]
19. The role of graphene for electrochemical energy storage. Raccichini R; Varzi A; Passerini S; Scrosati B Nat Mater; 2015 Mar; 14(3):271-9. PubMed ID: 25532074 [TBL] [Abstract][Full Text] [Related]
20. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. Wang XL; Han WQ ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]