These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23650352)

  • 1. Control of slippage with tunable bubble mattresses.
    Karatay E; Haase AS; Visser CW; Sun C; Lohse D; Tsai PA; Lammertink RG
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8422-6. PubMed ID: 23650352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble dispenser in microfluidic devices.
    Cubaud T; Tatineni M; Zhong X; Ho CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):037302. PubMed ID: 16241625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High friction on a bubble mattress.
    Steinberger A; Cottin-Bizonne C; Kleimann P; Charlaix E
    Nat Mater; 2007 Sep; 6(9):665-8. PubMed ID: 17643106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2. Slip and interfacial water structure.
    Tandon V; Kirby BJ
    Electrophoresis; 2008 Mar; 29(5):1102-14. PubMed ID: 18306185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slippage of water past superhydrophobic carbon nanotube forests in microchannels.
    Joseph P; Cottin-Bizonne C; Benoît JM; Ybert C; Journet C; Tabeling P; Bocquet L
    Phys Rev Lett; 2006 Oct; 97(15):156104. PubMed ID: 17155344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of partially obstructed breakup of bubbles in microfluidic Y-junctions.
    Ziyi X; Taotao F; Chunying Z; Shaokun J; Youguang M; Kai W; Guangsheng L
    Electrophoresis; 2019 Feb; 40(3):376-387. PubMed ID: 30188577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic drag force based on iterative density mapping: A new numerical tool for three-dimensional analysis of particle trajectories in a dielectrophoretic system.
    Knoerzer M; Szydzik C; Tovar-Lopez FJ; Tang X; Mitchell A; Khoshmanesh K
    Electrophoresis; 2016 Feb; 37(4):645-57. PubMed ID: 26643028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygenation by a superhydrophobic slip G/L contactor.
    Karatay E; Lammertink RG
    Lab Chip; 2012 Aug; 12(16):2922-9. PubMed ID: 22722560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles.
    Peyman SA; Abou-Saleh RH; McLaughlan JR; Ingram N; Johnson BR; Critchley K; Freear S; Evans JA; Markham AF; Coletta PL; Evans SD
    Lab Chip; 2012 Nov; 12(21):4544-52. PubMed ID: 22968592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbubble generation in a co-flow device operated in a new regime.
    Castro-Hernández E; van Hoeve W; Lohse D; Gordillo JM
    Lab Chip; 2011 Jun; 11(12):2023-9. PubMed ID: 21431188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation and computational modeling of hydrodynamics in bifurcating microchannels.
    Janakiraman V; Sastry S; Kadambi JR; Baskaran H
    Biomed Microdevices; 2008 Jun; 10(3):355-65. PubMed ID: 18175219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro-osmotic flows in a microchannel with patterned hydrodynamic slip walls.
    Zhao C; Yang C
    Electrophoresis; 2012 Mar; 33(6):899-980. PubMed ID: 22528409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-concentrating buoyant glass microbubbles for high sensitivity immunoassays.
    Juang DS; Hsu CH
    Lab Chip; 2016 Feb; 16(3):459-64. PubMed ID: 26620967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic focusing investigation in a micro-flow cytometer.
    Yang AS; Hsieh WH
    Biomed Microdevices; 2007 Apr; 9(2):113-22. PubMed ID: 17151936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired preparation of alginate nanoparticles using microbubble bursting.
    Elsayed M; Huang J; Edirisinghe M
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():132-9. PubMed ID: 25491969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the Relationship between Boundary Slip and Nanobubbles on a Smooth Hydrophobic Surface.
    Li D; Jing D; Pan Y; Bhushan B; Zhao X
    Langmuir; 2016 Nov; 32(43):11287-11294. PubMed ID: 27684436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusioosmotic flow in rectangular microchannels.
    Hoshyargar V; Nezameddin Ashrafizadeh S; Sadeghi A
    Electrophoresis; 2016 Mar; 37(5-6):809-17. PubMed ID: 26995195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable hydrodynamic characteristics in microchannels with biomimetic superhydrophobic (lotus leaf replica) walls.
    Dey R; Raj M K; Bhandaru N; Mukherjee R; Chakraborty S
    Soft Matter; 2014 May; 10(19):3451-62. PubMed ID: 24647804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.