These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23650495)

  • 1. Prediction and validation of gene-disease associations using methods inspired by social network analyses.
    Singh-Blom UM; Natarajan N; Tewari A; Woods JO; Dhillon IS; Marcotte EM
    PLoS One; 2013; 8(5):e58977. PubMed ID: 23650495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of MicroRNA-Disease Associations Based on Social Network Analysis Methods.
    Zou Q; Li J; Hong Q; Lin Z; Wu Y; Shi H; Ju Y
    Biomed Res Int; 2015; 2015():810514. PubMed ID: 26273645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ensemble positive unlabeled learning for disease gene identification.
    Yang P; Li X; Chua HN; Kwoh CK; Ng SK
    PLoS One; 2014; 9(5):e97079. PubMed ID: 24816822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction and Validation of Disease Genes Using HeteSim Scores.
    Zeng X; Liao Y; Liu Y; Zou Q
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):687-695. PubMed ID: 26890920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs.
    Le DH; Verbeke L; Son LH; Chu DT; Pham VH
    BMC Bioinformatics; 2017 Nov; 18(1):479. PubMed ID: 29137601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network.
    Yao X; Hao H; Li Y; Li S
    BMC Syst Biol; 2011 May; 5():79. PubMed ID: 21599985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network-based ranking methods for prediction of novel disease associated microRNAs.
    Le DH
    Comput Biol Chem; 2015 Oct; 58():139-48. PubMed ID: 26231308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel graph attention adversarial network for predicting disease-related associations.
    Zhang J; Jiang Z; Hu X; Song B
    Methods; 2020 Jul; 179():81-88. PubMed ID: 32446956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning a Markov Logic network for supervised gene regulatory network inference.
    Brouard C; Vrain C; Dubois J; Castel D; Debily MA; d'Alché-Buc F
    BMC Bioinformatics; 2013 Sep; 14():273. PubMed ID: 24028533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting deleterious missense genetic variants via integrative supervised nonnegative matrix tri-factorization.
    Arani AA; Sehhati M; Tabatabaiefar MA
    Sci Rep; 2021 Dec; 11(1):23747. PubMed ID: 34887492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples.
    Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network-based Phenome-Genome Association Prediction by Bi-Random Walk.
    Xie M; Xu Y; Zhang Y; Hwang T; Kuang R
    PLoS One; 2015; 10(5):e0125138. PubMed ID: 25933025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential gene prediction using limited gene essentiality information-An integrative semi-supervised machine learning strategy.
    Nandi S; Ganguli P; Sarkar RR
    PLoS One; 2020; 15(11):e0242943. PubMed ID: 33253254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying potential association on gene-disease network via dual hypergraph regularized least squares.
    Yang H; Ding Y; Tang J; Guo F
    BMC Genomics; 2021 Aug; 22(1):605. PubMed ID: 34372777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-clustering phenome-genome for phenotype classification and disease gene discovery.
    Hwang T; Atluri G; Xie M; Dey S; Hong C; Kumar V; Kuang R
    Nucleic Acids Res; 2012 Oct; 40(19):e146. PubMed ID: 22735708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring disease and gene set associations with rank coherence in networks.
    Hwang T; Zhang W; Xie M; Liu J; Kuang R
    Bioinformatics; 2011 Oct; 27(19):2692-9. PubMed ID: 21824970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.