These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 23650513)
1. Macro-invertebrate decline in surface water polluted with imidacloprid. Van Dijk TC; Van Staalduinen MA; Van der Sluijs JP PLoS One; 2013; 8(5):e62374. PubMed ID: 23650513 [TBL] [Abstract][Full Text] [Related]
2. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Morrissey CA; Mineau P; Devries JH; Sanchez-Bayo F; Liess M; Cavallaro MC; Liber K Environ Int; 2015 Jan; 74():291-303. PubMed ID: 25454246 [TBL] [Abstract][Full Text] [Related]
3. Can't take the heat: Temperature-enhanced toxicity in the mayfly Isonychia bicolor exposed to the neonicotinoid insecticide imidacloprid. Camp AA; Buchwalter DB Aquat Toxicol; 2016 Sep; 178():49-57. PubMed ID: 27471044 [TBL] [Abstract][Full Text] [Related]
4. Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses. Vijver MG; van den Brink PJ PLoS One; 2014; 9(2):e89837. PubMed ID: 24587069 [TBL] [Abstract][Full Text] [Related]
5. Imidacloprid perturbs feeding of Gammarus pulex at environmentally relevant concentrations. Agatz A; Ashauer R; Brown CD Environ Toxicol Chem; 2014 Mar; 33(3):648-53. PubMed ID: 24375767 [TBL] [Abstract][Full Text] [Related]
6. UV-irradiation and leaching in water reduce the toxicity of imidacloprid-contaminated leaves to the aquatic leaf-shredding amphipod Gammarus fossarum. Englert D; Zubrod JP; Neubauer C; Schulz R; Bundschuh M Environ Pollut; 2018 May; 236():119-125. PubMed ID: 29414331 [TBL] [Abstract][Full Text] [Related]
7. The impact of imidacloprid and thiacloprid on the mean species abundance in aquatic ecosystems. Thunnissen NW; Geurts KAG; Hoeks S; Hendriks AJ Sci Total Environ; 2022 May; 822():153626. PubMed ID: 35124047 [TBL] [Abstract][Full Text] [Related]
8. Ecological risks of imidacloprid to aquatic species in the Netherlands: Measured and estimated concentrations compared to species sensitivity distributions. Thunnissen NW; Lautz LS; van Schaik TWG; Hendriks AJ Chemosphere; 2020 Sep; 254():126604. PubMed ID: 32315814 [TBL] [Abstract][Full Text] [Related]
9. Preliminary aquatic risk assessment of imidacloprid after application in an experimental rice plot. Daam MA; Santos Pereira AC; Silva E; Caetano L; Cerejeira MJ Ecotoxicol Environ Saf; 2013 Nov; 97():78-85. PubMed ID: 23911212 [TBL] [Abstract][Full Text] [Related]
10. Effects of imidacloprid and a neonicotinoid mixture on aquatic invertebrate communities under Mediterranean conditions. Rico A; Arenas-Sánchez A; Pasqualini J; García-Astillero A; Cherta L; Nozal L; Vighi M Aquat Toxicol; 2018 Nov; 204():130-143. PubMed ID: 30245345 [TBL] [Abstract][Full Text] [Related]
11. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. Sumon KA; Ritika AK; Peeters ETHM; Rashid H; Bosma RH; Rahman MS; Fatema MK; Van den Brink PJ Environ Pollut; 2018 May; 236():432-441. PubMed ID: 29414368 [TBL] [Abstract][Full Text] [Related]
12. Acute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditions. Stoughton SJ; Liber K; Culp J; Cessna A Arch Environ Contam Toxicol; 2008 May; 54(4):662-73. PubMed ID: 18214581 [TBL] [Abstract][Full Text] [Related]
13. The neonicotinoid imidacloprid shows high chronic toxicity to mayfly nymphs. Roessink I; Merga LB; Zweers HJ; Van den Brink PJ Environ Toxicol Chem; 2013 Apr; 32(5):1096-100. PubMed ID: 23444274 [TBL] [Abstract][Full Text] [Related]
14. Community responses of aquatic insects in paddy mesocosms to repeated exposures of the neonicotinoids imidacloprid and dinotefuran. Hayasaka D; Kobashi K; Hashimoto K Ecotoxicol Environ Saf; 2019 Jul; 175():272-281. PubMed ID: 30904719 [TBL] [Abstract][Full Text] [Related]
15. Effects of the insecticide imidacloprid on aquatic invertebrate communities of the Ecuadorian Amazon. Cabrera M; Capparelli MV; Ortega-Andrade HM; Medina-Villamizar EJ; Rico A Environ Pollut; 2024 Sep; 357():124459. PubMed ID: 38942275 [TBL] [Abstract][Full Text] [Related]
16. Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors. Cavallaro MC; Morrissey CA; Headley JV; Peru KM; Liber K Environ Toxicol Chem; 2017 Feb; 36(2):372-382. PubMed ID: 27329202 [TBL] [Abstract][Full Text] [Related]
17. Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms. Kobashi K; Harada T; Adachi Y; Mori M; Ihara M; Hayasaka D Ecotoxicol Environ Saf; 2017 Apr; 138():122-129. PubMed ID: 28040617 [TBL] [Abstract][Full Text] [Related]
18. Non-target effects on aquatic decomposer organisms of imidacloprid as a systemic insecticide to control emerald ash borer in riparian trees. Kreutzweiser D; Good K; Chartrand D; Scarr T; Thompson D Ecotoxicol Environ Saf; 2007 Nov; 68(3):315-25. PubMed ID: 17512054 [TBL] [Abstract][Full Text] [Related]
19. Structural changes in a macrozoobenthos assemblage after imidacloprid pulses in aquatic field-based microcosms. Colombo V; Mohr S; Berghahn R; Pettigrove VJ Arch Environ Contam Toxicol; 2013 Nov; 65(4):683-92. PubMed ID: 23903383 [TBL] [Abstract][Full Text] [Related]
20. Differences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronil. Hayasaka D; Korenaga T; Suzuki K; Sánchez-Bayo F; Goka K Ecotoxicology; 2012 Mar; 21(2):421-7. PubMed ID: 21971973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]