These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2365062)

  • 1. NMR studies of the lipid metabolism of T47D human breast cancer spheroids.
    Ronen SM; Stier A; Degani H
    FEBS Lett; 1990 Jun; 266(1-2):147-9. PubMed ID: 2365062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid metabolism in large T47D human breast cancer spheroids: 31P- and 13C-NMR studies of choline and ethanolamine uptake.
    Ronen SM; Rushkin E; Degani H
    Biochim Biophys Acta; 1992 Mar; 1138(3):203-12. PubMed ID: 1547282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of 13C NMR to the characterization of phospholipid metabolism in cells.
    Ronen SM; Degani H
    Magn Reson Med; 1992 Jun; 25(2):384-9. PubMed ID: 1319537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid metabolism in T47D human breast cancer cells: 31P and 13C-NMR studies of choline and ethanolamine uptake.
    Ronen SM; Rushkin E; Degani H
    Biochim Biophys Acta; 1991 Oct; 1095(1):5-16. PubMed ID: 1657190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of in vivo and in vitro 31P NMR spectra from human breast tumours: variations in phospholipid metabolism.
    Smith TA; Glaholm J; Leach MO; Machin L; Collins DJ; Payne GS; McCready VR
    Br J Cancer; 1991 Apr; 63(4):514-6. PubMed ID: 2021535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory aspects of mitochondrial phospholipase A2: correlation of hydrolysis rates with substrate configuration as evidenced by 31P-NMR.
    Lenting HB; Nicolay K; van den Bosch H
    Biochim Biophys Acta; 1988 Feb; 958(3):405-15. PubMed ID: 3342248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipid composition and organization of cytochrome c oxidase preparations as determined by 31P-nuclear magnetic resonance.
    Seelig A; Seelig J
    Biochim Biophys Acta; 1985 May; 815(2):153-8. PubMed ID: 2986692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorous metabolites and steady-state energetics of transformed fibroblasts during three-dimensional growth.
    Kunz-Schughart LA; Freyer JP
    Am J Physiol Cell Physiol; 2002 Oct; 283(4):C1287-97. PubMed ID: 12225991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of membrane phosphatidylethanolamine-deficiency/phosphatidylcholine-excess on the metabolism of phosphatidylcholine and phosphatidylethanolamine.
    Fisk HA; Kano-Sueoka T
    J Cell Physiol; 1992 Dec; 153(3):589-95. PubMed ID: 1447319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the cytidine phospholipid pathways in human cancer cells and effects of 1-beta-D-arabinofuranosylcytosine: a noninvasive 31P nuclear magnetic resonance study.
    Daly PF; Zugmaier G; Sandler D; Carpen M; Myers CE; Cohen JS
    Cancer Res; 1990 Feb; 50(3):552-7. PubMed ID: 2153442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transverse movement of spin-labeled phospholipids in the plasma membrane of a hepatocytic cell line (HepG2): implications for biliary lipid secretion.
    Müller P; Pomorski T; Porwoli S; Tauber R; Herrmann A
    Hepatology; 1996 Dec; 24(6):1497-503. PubMed ID: 8938187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strength of Ca(2+) binding to retinal lipid membranes: consequences for lipid organization.
    Huster D; Arnold K; Gawrisch K
    Biophys J; 2000 Jun; 78(6):3011-8. PubMed ID: 10827979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphomonoester is associated with proliferation in human breast cancer: a 31P MRS study.
    Kalra R; Wade KE; Hands L; Styles P; Camplejohn R; Greenall M; Adams GE; Harris AL; Radda GK
    Br J Cancer; 1993 May; 67(5):1145-53. PubMed ID: 8494715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidylcholine and phosphatidylethanolamine plasmalogens in lipid loaded human macrophages.
    Wallner S; Orsó E; Grandl M; Konovalova T; Liebisch G; Schmitz G
    PLoS One; 2018; 13(10):e0205706. PubMed ID: 30308051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of liver microsomal lipids by halothane metabolites; a multi nuclear NMR spectroscopic study.
    Müller R; Stier A
    Naunyn Schmiedebergs Arch Pharmacol; 1982 Dec; 321(3):234-7. PubMed ID: 7155205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of 31P-NMR saturation transfer techniques to investigate phospholipid motion and organization in model and biological membranes.
    de Kruijff B; Morris GA; Cullis PR
    Biochim Biophys Acta; 1980 May; 598(1):206-11. PubMed ID: 7417428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes.
    Stamatatos L; Leventis R; Zuckermann MJ; Silvius JR
    Biochemistry; 1988 May; 27(11):3917-25. PubMed ID: 3415963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation between lipid polymorphism and transbilayer movement of lipids in rat liver microsomes.
    van Duijn G; Luiken J; Verkleij AJ; de Kruijff B
    Biochim Biophys Acta; 1986 Dec; 863(2):193-204. PubMed ID: 3790558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in cellular and plasma membrane phospholipid composition after lipopolysaccharide stimulation of human neutrophils, studied by 31P NMR.
    Wright LC; Nouri-Sorkhabi MH; May GL; Danckwerts LS; Kuchel PW; Sorrell TC
    Eur J Biochem; 1997 Jan; 243(1-2):328-35. PubMed ID: 9030756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in plasma-membrane lipid composition: a strategy for acclimation to copper stress.
    Berglund AH; Quartacci MF; Liljenberg C
    Biochem Soc Trans; 2000 Dec; 28(6):905-7. PubMed ID: 11171252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.