These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 23651189)
1. Integration of epidemiology, immunobiology, and translational research for brain tumors. Okada H; Scheurer ME; Sarkar SN; Bondy ML Ann N Y Acad Sci; 2013 May; 1284(1):17-23. PubMed ID: 23651189 [TBL] [Abstract][Full Text] [Related]
2. Role of type 1 IFNs in antiglioma immunosurveillance--using mouse studies to guide examination of novel prognostic markers in humans. Fujita M; Scheurer ME; Decker SA; McDonald HA; Kohanbash G; Kastenhuber ER; Kato H; Bondy ML; Ohlfest JR; Okada H Clin Cancer Res; 2010 Jul; 16(13):3409-19. PubMed ID: 20472682 [TBL] [Abstract][Full Text] [Related]
3. Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. Verschuere T; Toelen J; Maes W; Poirier F; Boon L; Tousseyn T; Mathivet T; Gerhardt H; Mathieu V; Kiss R; Lefranc F; Van Gool SW; De Vleeschouwer S Int J Cancer; 2014 Feb; 134(4):873-84. PubMed ID: 23929302 [TBL] [Abstract][Full Text] [Related]
4. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Fujita M; Kohanbash G; Fellows-Mayle W; Hamilton RL; Komohara Y; Decker SA; Ohlfest JR; Okada H Cancer Res; 2011 Apr; 71(7):2664-74. PubMed ID: 21324923 [TBL] [Abstract][Full Text] [Related]
5. Immunobiology and immunotherapeutic targeting of glioma stem cells. Madany M; Thomas TM; Edwards L; Yu JS Adv Exp Med Biol; 2015; 853():139-66. PubMed ID: 25895711 [TBL] [Abstract][Full Text] [Related]
6. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Ohkuri T; Ghosh A; Kosaka A; Zhu J; Ikeura M; David M; Watkins SC; Sarkar SN; Okada H Cancer Immunol Res; 2014 Dec; 2(12):1199-208. PubMed ID: 25300859 [TBL] [Abstract][Full Text] [Related]
7. Myeloid-derived suppressor cells (MDSCs) in gliomas and glioma-development. Kohanbash G; Okada H Immunol Invest; 2012; 41(6-7):658-79. PubMed ID: 23017140 [TBL] [Abstract][Full Text] [Related]
8. Immunotherapy approaches for malignant glioma from 2007 to 2009. Johnson LA; Sampson JH Curr Neurol Neurosci Rep; 2010 Jul; 10(4):259-66. PubMed ID: 20424975 [TBL] [Abstract][Full Text] [Related]
9. Immunotherapy for gliomas: shedding light on progress in preclinical and clinical development. Garcia-Fabiani MB; Ventosa M; Comba A; Candolfi M; Nicola Candia AJ; Alghamri MS; Kadiyala P; Carney S; Faisal SM; Schwendeman A; Moon JJ; Scheetz L; Lahann J; Mauser A; Lowenstein PR; Castro MG Expert Opin Investig Drugs; 2020 Jul; 29(7):659-684. PubMed ID: 32400216 [TBL] [Abstract][Full Text] [Related]
10. Identification of HLA-A2- and A24-restricted T-cell epitopes derived from SOX6 expressed in glioma stem cells for immunotherapy. Ueda R; Ohkusu-Tsukada K; Fusaki N; Soeda A; Kawase T; Kawakami Y; Toda M Int J Cancer; 2010 Feb; 126(4):919-29. PubMed ID: 19728337 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of antitumor activity by combination of tumor lysate-pulsed dendritic cells and celecoxib in a rat glioma model. Zhang H; Tian M; Xiu C; Wang Y; Tang G Oncol Res; 2013; 20(10):447-55. PubMed ID: 24308155 [TBL] [Abstract][Full Text] [Related]
12. Effects of antihistamine and anti-inflammatory medication use on risk of specific glioma histologies. Scheurer ME; Amirian ES; Davlin SL; Rice T; Wrensch M; Bondy ML Int J Cancer; 2011 Nov; 129(9):2290-6. PubMed ID: 21190193 [TBL] [Abstract][Full Text] [Related]
13. Cell- and peptide-based immunotherapeutic approaches for glioma. Yamanaka R Trends Mol Med; 2008 May; 14(5):228-35. PubMed ID: 18403264 [TBL] [Abstract][Full Text] [Related]
14. Immunotherapy for glioma: Current management and future application. Xu S; Tang L; Li X; Fan F; Liu Z Cancer Lett; 2020 Apr; 476():1-12. PubMed ID: 32044356 [TBL] [Abstract][Full Text] [Related]
15. Medium dose intermittent cyclophosphamide induces immunogenic cell death and cancer cell autonomous type I interferon production in glioma models. Du B; Waxman DJ Cancer Lett; 2020 Feb; 470():170-180. PubMed ID: 31765733 [TBL] [Abstract][Full Text] [Related]
16. S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages. Wang H; Zhang L; Zhang IY; Chen X; Da Fonseca A; Wu S; Ren H; Badie S; Sadeghi S; Ouyang M; Warden CD; Badie B Clin Cancer Res; 2013 Jul; 19(14):3764-75. PubMed ID: 23719262 [TBL] [Abstract][Full Text] [Related]
17. GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-α. Kohanbash G; McKaveney K; Sakaki M; Ueda R; Mintz AH; Amankulor N; Fujita M; Ohlfest JR; Okada H Cancer Res; 2013 Nov; 73(21):6413-23. PubMed ID: 24030977 [TBL] [Abstract][Full Text] [Related]
18. Dendritic Cell-Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma. Dey M; Chang AL; Miska J; Wainwright DA; Ahmed AU; Balyasnikova IV; Pytel P; Han Y; Tobias A; Zhang L; Qiao J; Lesniak MS J Immunol; 2015 Jul; 195(1):367-76. PubMed ID: 26026061 [TBL] [Abstract][Full Text] [Related]
19. Aspects of immunobiology and immunotherapy and uses of monoclonal antibodies and biologic immune modifiers in human gliomas. Lee Y; Bigner DD Neurol Clin; 1985 Nov; 3(4):901-17. PubMed ID: 2417097 [TBL] [Abstract][Full Text] [Related]
20. Blocking NHE1 stimulates glioma tumor immunity by restoring OXPHOS function of myeloid cells. Hasan MN; Luo L; Ding D; Song S; Bhuiyan MIH; Liu R; Foley LM; Guan X; Kohanbash G; Hitchens TK; Castro MG; Zhang Z; Sun D Theranostics; 2021; 11(3):1295-1309. PubMed ID: 33391535 [No Abstract] [Full Text] [Related] [Next] [New Search]