These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23651226)

  • 1. The orbitofrontal cortex regulates outcome-based decision-making via the lateral striatum.
    Gourley SL; Olevska A; Zimmermann KS; Ressler KJ; Dileone RJ; Taylor JR
    Eur J Neurosci; 2013 Aug; 38(3):2382-8. PubMed ID: 23651226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connections of the Mouse Orbitofrontal Cortex and Regulation of Goal-Directed Action Selection by Brain-Derived Neurotrophic Factor.
    Zimmermann KS; Yamin JA; Rainnie DG; Ressler KJ; Gourley SL
    Biol Psychiatry; 2017 Feb; 81(4):366-377. PubMed ID: 26786312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAAα1-mediated plasticity in the orbitofrontal cortex regulates context-dependent action selection.
    Swanson AM; Allen AG; Shapiro LP; Gourley SL
    Neuropsychopharmacology; 2015 Mar; 40(4):1027-36. PubMed ID: 25348603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Medial Orbitofrontal Cortex Regulates Sensitivity to Outcome Value.
    Gourley SL; Zimmermann KS; Allen AG; Taylor JR
    J Neurosci; 2016 Apr; 36(16):4600-13. PubMed ID: 27098701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-individual differences in decision-making, flexible and goal-directed behaviors: novel insights within the prefronto-striatal networks.
    Fitoussi A; Renault P; Le Moine C; Coutureau E; Cador M; Dellu-Hagedorn F
    Brain Struct Funct; 2018 Mar; 223(2):897-912. PubMed ID: 29026986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action-Outcome Expectancies Require Orbitofrontal Neurotrophin Systems in Naïve and Cocaine-Exposed Mice.
    Pitts EG; Barfield ET; Woon EP; Gourley SL
    Neurotherapeutics; 2020 Jan; 17(1):165-177. PubMed ID: 31218603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction and Blockade of Adolescent Cocaine-Induced Habits.
    DePoy LM; Zimmermann KS; Marvar PJ; Gourley SL
    Biol Psychiatry; 2017 Apr; 81(7):595-605. PubMed ID: 27871669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adolescent-onset GABAA α1 silencing regulates reward-related decision making.
    Butkovich LM; DePoy LM; Allen AG; Shapiro LP; Swanson AM; Gourley SL
    Eur J Neurosci; 2015 Aug; 42(4):2114-2121. PubMed ID: 26096050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prior Cocaine Self-Administration Increases Response-Outcome Encoding That Is Divorced from Actions Selected in Dorsal Lateral Striatum.
    Burton AC; Bissonette GB; Zhao AC; Patel PK; Roesch MR
    J Neurosci; 2017 Aug; 37(32):7737-7747. PubMed ID: 28694335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat.
    Berendse HW; Galis-de Graaf Y; Groenewegen HJ
    J Comp Neurol; 1992 Feb; 316(3):314-47. PubMed ID: 1577988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early-life cocaine interferes with BDNF-mediated behavioral plasticity.
    Hinton EA; Wheeler MG; Gourley SL
    Learn Mem; 2014 Apr; 21(5):253-7. PubMed ID: 24737916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating hippocampus and striatum in decision-making.
    Johnson A; van der Meer MA; Redish AD
    Curr Opin Neurobiol; 2007 Dec; 17(6):692-7. PubMed ID: 18313289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction.
    Hu Y; Salmeron BJ; Gu H; Stein EA; Yang Y
    JAMA Psychiatry; 2015 Jun; 72(6):584-92. PubMed ID: 25853901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of ventral hippocampus projections promotes sensitivity to changes in contingency.
    Barker JM; Bryant KG; Chandler LJ
    Learn Mem; 2019 Jan; 26(1):1-8. PubMed ID: 30559114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoskeletal determinants of stimulus-response habits.
    Gourley SL; Olevska A; Gordon J; Taylor JR
    J Neurosci; 2013 Jul; 33(29):11811-6. PubMed ID: 23864670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct fronto-striatal couplings reveal the double-faced nature of response-outcome relations in instruction-based learning.
    Ruge H; Wolfensteller U
    Cogn Affect Behav Neurosci; 2015 Jun; 15(2):349-64. PubMed ID: 25361755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of partial dopamine depletion on cognitive flexibility in BDNF heterozygous mice.
    Parikh V; Naughton SX; Yegla B; Guzman DM
    Psychopharmacology (Berl); 2016 Apr; 233(8):1361-75. PubMed ID: 26861892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Novel BDNF-Specific Corticostriatal Circuitries.
    Ehinger Y; Soneja D; Phamluong K; Salvi A; Ron D
    eNeuro; 2023 May; 10(5):. PubMed ID: 37156610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prefrontal cortical BDNF: A regulatory key in cocaine- and food-reinforced behaviors.
    Pitts EG; Taylor JR; Gourley SL
    Neurobiol Dis; 2016 Jul; 91():326-35. PubMed ID: 26923993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional dissociation in frontal and striatal areas for processing of positive and negative reward information.
    Liu X; Powell DK; Wang H; Gold BT; Corbly CR; Joseph JE
    J Neurosci; 2007 Apr; 27(17):4587-97. PubMed ID: 17460071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.