These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23651235)

  • 1. Carbohydrate-decorated PCL fibers for specific protein adhesion.
    Lancuški A; Bossard F; Fort S
    Biomacromolecules; 2013 Jun; 14(6):1877-84. PubMed ID: 23651235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(epsilon-caprolactone) blends for tissue engineering applications in the form of hollow fibers.
    Chiono V; Ciardelli G; Vozzi G; Sotgiu MG; Vinci B; Domenici C; Giusti P
    J Biomed Mater Res A; 2008 Jun; 85(4):938-53. PubMed ID: 17896770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of highly porous poly (ɛ-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning.
    Pant HR; Neupane MP; Pant B; Panthi G; Oh HJ; Lee MH; Kim HY
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):587-92. PubMed ID: 21856134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring of bioresorbable polymers for elaboration of sugar-functionalized nanoparticles.
    Cade D; Ramus E; Rinaudo M; Auzély-Velty R; Delair T; Hamaide T
    Biomacromolecules; 2004; 5(3):922-7. PubMed ID: 15132682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG; Black RA; Curran JM; Hunt JA; Rhodes NP; Williams DF
    Biomaterials; 2004 Aug; 25(19):4741-8. PubMed ID: 15120520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals.
    Zoppe JO; Peresin MS; Habibi Y; Venditti RA; Rojas OJ
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1996-2004. PubMed ID: 20355825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The immobilization of proteins on biodegradable polymer fibers via click chemistry.
    Shi Q; Chen X; Lu T; Jing X
    Biomaterials; 2008 Mar; 29(8):1118-26. PubMed ID: 18035410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving cytoactive of endothelial cell by introducing fibronectin to the surface of poly L-Lactic acid fiber mats via dopamine.
    Yang W; Zhang X; Wu K; Liu X; Jiao Y; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():373-9. PubMed ID: 27612725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun azido-PCL nanofibers for enhanced surface functionalization by click chemistry.
    Lancuški A; Fort S; Bossard F
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6499-504. PubMed ID: 23145558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encapsulation and exfoliation of inorganic lamellar fillers into polycaprolactone by electrospinning.
    Romeo V; Gorrasi G; Vittoria V; Chronakis IS
    Biomacromolecules; 2007 Oct; 8(10):3147-52. PubMed ID: 17824642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.
    Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S
    Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of protein adsorption on functionalized electrospun fibers.
    Grafahrend D; Calvet JL; Klinkhammer K; Salber J; Dalton PD; Möller M; Klee D
    Biotechnol Bioeng; 2008 Oct; 101(3):609-21. PubMed ID: 18461606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoconductive and degradable electrospun nonwoven poly(epsilon-caprolactone)/CaO-SiO2 gel composite fabric.
    Seol YJ; Kim KH; Kim IA; Rhee SH
    J Biomed Mater Res A; 2010 Aug; 94(2):649-59. PubMed ID: 20213814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface engineering of polycaprolactone by biomacromolecules and their blood compatibility.
    Khandwekar AP; Patil DP; Shouche Y; Doble M
    J Biomater Appl; 2011 Aug; 26(2):227-52. PubMed ID: 20511382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocomposites electrospun with poly(ε-caprolactone) and silk fibroin powder for biomedical applications.
    Lee H; Kim G
    J Biomater Sci Polym Ed; 2010; 21(13):1687-99. PubMed ID: 20537249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of electrospun three-arm star poly(ε-caprolactone) meshes for tissue engineering applications.
    Puppi D; Detta N; Piras AM; Chiellini F; Clarke DA; Reilly GC; Chiellini E
    Macromol Biosci; 2010 Aug; 10(8):887-97. PubMed ID: 20376838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical testing of electrospun PCL fibers.
    Croisier F; Duwez AS; Jérôme C; Léonard AF; van der Werf KO; Dijkstra PJ; Bennink ML
    Acta Biomater; 2012 Jan; 8(1):218-24. PubMed ID: 21878398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications.
    Han J; Chen TX; Branford-White CJ; Zhu LM
    Int J Pharm; 2009 Dec; 382(1-2):215-21. PubMed ID: 19660536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.