These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

933 related articles for article (PubMed ID: 23651396)

  • 1. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.
    Xia D; Gan Y; Cui F
    Curr Pharm Des; 2014; 20(3):408-35. PubMed ID: 23651396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production methods for nanodrug particles using the bottom-up approach.
    Chan HK; Kwok PC
    Adv Drug Deliv Rev; 2011 May; 63(6):406-16. PubMed ID: 21457742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size.
    Sinha B; Müller RH; Möschwitzer JP
    Int J Pharm; 2013 Aug; 453(1):126-41. PubMed ID: 23333709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review.
    Padrela L; Rodrigues MA; Duarte A; Dias AMA; Braga MEM; de Sousa HC
    Adv Drug Deliv Rev; 2018 Jun; 131():22-78. PubMed ID: 30026127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.
    Dong Y; Ng WK; Hu J; Shen S; Tan RB
    Int J Pharm; 2010 Feb; 386(1-2):256-61. PubMed ID: 19922777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic investigation of the cavi-precipitation process for the production of ibuprofen nanocrystals.
    Sinha B; Müller RH; Möschwitzer JP
    Int J Pharm; 2013 Dec; 458(2):315-23. PubMed ID: 24148667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term stability of quercetin nanocrystals prepared by different methods.
    Kakran M; Shegokar R; Sahoo NG; Gohla S; Li L; Müller RH
    J Pharm Pharmacol; 2012 Oct; 64(10):1394-402. PubMed ID: 22943170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. APPLICATION OF VARIOUS POLYMERS AND POLYMERS BASED TECHNIQUES USED TO IMPROVE SOLUBILITY OF POORLY WATER SOLUBLE DRUGS: A REVIEW.
    Muhammad Sarfraz R; Bashir S; Mahmood A; Ahsan H; Riaz H; Raza H; Rashid Z; Atif Raza S; Asad Abrar M; Abbas K; Yasmeen T
    Acta Pol Pharm; 2017 Mar; 74(2):347-356. PubMed ID: 29624239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotechnology versus other techniques in improving drug dissolution.
    Kwok PC; Chan HK
    Curr Pharm Des; 2014; 20(3):474-82. PubMed ID: 23651399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.
    Abuzar SM; Hyun SM; Kim JH; Park HJ; Kim MS; Park JS; Hwang SJ
    Int J Pharm; 2018 Mar; 538(1-2):1-13. PubMed ID: 29278733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different methods for preparation of a stable riccardin D formulation via nano-technology.
    Liu G; Zhang D; Jiao Y; Zheng D; Liu Y; Duan C; Jia L; Zhang Q; Lou H
    Int J Pharm; 2012 Jan; 422(1-2):516-22. PubMed ID: 22119965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation.
    Keck CM; Müller RH
    Eur J Pharm Biopharm; 2006 Jan; 62(1):3-16. PubMed ID: 16129588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of pure drug nanocrystals and nano co-crystals by confinement methods.
    Fontana F; Figueiredo P; Zhang P; Hirvonen JT; Liu D; Santos HA
    Adv Drug Deliv Rev; 2018 Jun; 131():3-21. PubMed ID: 29738786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmaceutical Strategies for Stabilizing Drug Nanocrystals.
    Yang H; Kim H; Jung S; Seo H; Nida SK; Yoo SY; Lee J
    Curr Pharm Des; 2018; 24(21):2362-2374. PubMed ID: 29766785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying.
    Hu J; Ng WK; Dong Y; Shen S; Tan RB
    Int J Pharm; 2011 Feb; 404(1-2):198-204. PubMed ID: 21056643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrohydrodynamic atomization and spray-drying for the production of pure drug nanocrystals and co-crystals.
    Sverdlov Arzi R; Sosnik A
    Adv Drug Deliv Rev; 2018 Jun; 131():79-100. PubMed ID: 30031740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel surface modified nitrendipine nanocrystals with enhancement of bioavailability and stability.
    Quan P; Shi K; Piao H; Piao H; Liang N; Xia D; Cui F
    Int J Pharm; 2012 Jul; 430(1-2):366-71. PubMed ID: 22531846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spherical crystallization of drugs.
    Kovačič B; Vrečer F; Planinšek O
    Acta Pharm; 2012 Mar; 62(1):1-14. PubMed ID: 22472445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmaceutical nanocrystals: production by wet milling and applications.
    Malamatari M; Taylor KMG; Malamataris S; Douroumis D; Kachrimanis K
    Drug Discov Today; 2018 Mar; 23(3):534-547. PubMed ID: 29326082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.