These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 23651399)

  • 1. Nanotechnology versus other techniques in improving drug dissolution.
    Kwok PC; Chan HK
    Curr Pharm Des; 2014; 20(3):474-82. PubMed ID: 23651399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced dissolution of inhalable cyclosporine nano-matrix particles with mannitol as matrix former.
    Yamasaki K; Kwok PC; Fukushige K; Prud'homme RK; Chan HK
    Int J Pharm; 2011 Nov; 420(1):34-42. PubMed ID: 21864662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmaceutical nanocrystals: production by wet milling and applications.
    Malamatari M; Taylor KMG; Malamataris S; Douroumis D; Kachrimanis K
    Drug Discov Today; 2018 Mar; 23(3):534-547. PubMed ID: 29326082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanosizing techniques for improving bioavailability of drugs.
    Al-Kassas R; Bansal M; Shaw J
    J Control Release; 2017 Aug; 260():202-212. PubMed ID: 28603030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of nanosuspensions as a tool to improve drug bioavailability: focus on topical delivery.
    Lai F; Schlich M; Pireddu R; Corrias F; Fadda AM; Sinico C
    Curr Pharm Des; 2015; 21(42):6089-103. PubMed ID: 26503149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards sustainability: new approaches to nano-drug preparation.
    Cheow WS; Xu R; Hadinoto K
    Curr Pharm Des; 2013; 19(35):6229-45. PubMed ID: 23469999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of spray-drying and electrospraying/electospinning for poorly water-soluble drugs: a particle engineering approach.
    Bohr A; Boetker JP; Rades T; Rantanen J; Yang M
    Curr Pharm Des; 2014; 20(3):325-48. PubMed ID: 23651398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of different combinations of nanocrystallization technologies on avanafil nanoparticles: in vitro, in vivo and stability evaluation.
    Soliman KA; Ibrahim HK; Ghorab MM
    Int J Pharm; 2017 Jan; 517(1-2):148-156. PubMed ID: 27939570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying.
    Hu J; Ng WK; Dong Y; Shen S; Tan RB
    Int J Pharm; 2011 Feb; 404(1-2):198-204. PubMed ID: 21056643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and evaluation of high dispersion stable nanocrystal formulation of poorly water-soluble compounds by using povacoat.
    Yuminoki K; Seko F; Horii S; Takeuchi H; Teramoto K; Nakada Y; Hashimoto N
    J Pharm Sci; 2014 Nov; 103(11):3772-3781. PubMed ID: 25209659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding a relaxation behavior in a nanoparticle suspension for drug delivery applications.
    Deng Z; Xu S; Li S
    Int J Pharm; 2008 Mar; 351(1-2):236-43. PubMed ID: 18093763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What is a suitable dissolution method for drug nanoparticles?
    Heng D; Cutler DJ; Chan HK; Yun J; Raper JA
    Pharm Res; 2008 Jul; 25(7):1696-701. PubMed ID: 18320295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocrystallization by evaporative antisolvent technique for solubility and bioavailability enhancement of telmisartan.
    Bajaj A; Rao MR; Pardeshi A; Sali D
    AAPS PharmSciTech; 2012 Dec; 13(4):1331-40. PubMed ID: 23054986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spray granulation: importance of process parameters on in vitro and in vivo behavior of dried nanosuspensions.
    Figueroa CE; Bose S
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1046-55. PubMed ID: 23916460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review: Pharmaceutical and Pharmacokinetic Aspect of Nanocrystalline Suspensions.
    Shah DA; Murdande SB; Dave RH
    J Pharm Sci; 2016 Jan; 105(1):10-24. PubMed ID: 26580860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to measure release from nanosized carriers?
    Nothnagel L; Wacker MG
    Eur J Pharm Sci; 2018 Jul; 120():199-211. PubMed ID: 29751101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.
    Xia D; Gan Y; Cui F
    Curr Pharm Des; 2014; 20(3):408-35. PubMed ID: 23651396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-sized crystalline drug production by milling technology.
    Moribe K; Ueda K; Limwikrant W; Higashi K; Yamamoto K
    Curr Pharm Des; 2013; 19(35):6246-58. PubMed ID: 23470002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocrystal technology in the delivery of poorly soluble drugs: an overview.
    Nagarwal RC; Kumar R; Dhanawat M; Das N; Pandit JK
    Curr Drug Deliv; 2011 Jul; 8(4):398-406. PubMed ID: 21453258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.