BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23651455)

  • 1. Design and selection parameters to accelerate the discovery of novel central nervous system positron emission tomography (PET) ligands and their application in the development of a novel phosphodiesterase 2A PET ligand.
    Zhang L; Villalobos A; Beck EM; Bocan T; Chappie TA; Chen L; Grimwood S; Heck SD; Helal CJ; Hou X; Humphrey JM; Lu J; Skaddan MB; McCarthy TJ; Verhoest PR; Wager TT; Zasadny K
    J Med Chem; 2013 Jun; 56(11):4568-79. PubMed ID: 23651455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preclinical Evaluation of 18F-PF-05270430, a Novel PET Radioligand for the Phosphodiesterase 2A Enzyme.
    Chen L; Nabulsi N; Naganawa M; Zasadny K; Skaddan MB; Zhang L; Najafzadeh S; Lin SF; Helal CJ; Boyden TL; Chang C; Ropchan J; Carson RE; Villalobos A; Huang Y
    J Nucl Med; 2016 Sep; 57(9):1448-53. PubMed ID: 27199356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-in-Human Assessment of the Novel PDE2A PET Radiotracer 18F-PF-05270430.
    Naganawa M; Waterhouse RN; Nabulsi N; Lin SF; Labaree D; Ropchan J; Tarabar S; DeMartinis N; Ogden A; Banerjee A; Huang Y; Carson RE
    J Nucl Med; 2016 Sep; 57(9):1388-95. PubMed ID: 27103022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiosynthesis and Biological Investigation of a Novel Fluorine-18 Labeled Benzoimidazotriazine- Based Radioligand for the Imaging of Phosphodiesterase 2A with Positron Emission Tomography.
    Ritawidya R; Wenzel B; Teodoro R; Toussaint M; Kranz M; Deuther-Conrad W; Dukic-Stefanovic S; Ludwig FA; Scheunemann M; Brust P
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31731831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, 18F-Radiolabelling and Biological Characterization of Novel Fluoroalkylated Triazine Derivatives for in Vivo Imaging of Phosphodiesterase 2A in Brain via Positron Emission Tomography.
    Schröder S; Wenzel B; Deuther-Conrad W; Teodoro R; Egerland U; Kranz M; Scheunemann M; Höfgen N; Steinbach J; Brust P
    Molecules; 2015 May; 20(6):9591-615. PubMed ID: 26016549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of an
    Schröder S; Wenzel B; Deuther-Conrad W; Teodoro R; Kranz M; Scheunemann M; Egerland U; Höfgen N; Briel D; Steinbach J; Brust P
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29498659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and nicotinic acetylcholine receptor in vivo binding properties of 2-fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine: a new positron emission tomography ligand for nicotinic receptors.
    Doll F; Dolci L; Valette H; Hinnen F; Vaufrey F; Guenther I; Fuseau C; Coulon C; Bottlaender M; Crouzel C
    J Med Chem; 1999 Jun; 42(12):2251-9. PubMed ID: 10377231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivatives of dibenzothiophene for positron emission tomography imaging of α7-nicotinic acetylcholine receptors.
    Gao Y; Kellar KJ; Yasuda RP; Tran T; Xiao Y; Dannals RF; Horti AG
    J Med Chem; 2013 Oct; 56(19):7574-89. PubMed ID: 24050653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and In Vitro Evaluation of 8-Pyridinyl-Substituted Benzo[
    Ritawidya R; Ludwig FA; Briel D; Brust P; Scheunemann M
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31370274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derivatives of (-)-7-methyl-2-(5-(pyridinyl)pyridin-3-yl)-7-azabicyclo[2.2.1]heptane are potential ligands for positron emission tomography imaging of extrathalamic nicotinic acetylcholine receptors.
    Gao Y; Horti AG; Kuwabara H; Ravert HT; Hilton J; Holt DP; Kumar A; Alexander M; Endres CJ; Wong DF; Dannals RF
    J Med Chem; 2007 Aug; 50(16):3814-24. PubMed ID: 17629263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5-substituted derivatives of 6-halogeno-3-((2-(S)-azetidinyl)methoxy)pyridine and 6-halogeno-3-((2-(S)-pyrrolidinyl)methoxy)pyridine with low picomolar affinity for alpha4beta2 nicotinic acetylcholine receptor and wide range of lipophilicity: potential probes for imaging with positron emission tomography.
    Zhang Y; Pavlova OA; Chefer SI; Hall AW; Kurian V; Brown LL; Kimes AS; Mukhin AG; Horti AG
    J Med Chem; 2004 May; 47(10):2453-65. PubMed ID: 15115389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and evaluation of novel radioligands for positron emission tomography imaging of metabotropic glutamate receptor subtype 1 (mGluR1) in rodent brain.
    Fujinaga M; Yamasaki T; Yui J; Hatori A; Xie L; Kawamura K; Asagawa C; Kumata K; Yoshida Y; Ogawa M; Nengaki N; Fukumura T; Zhang MR
    J Med Chem; 2012 Mar; 55(5):2342-52. PubMed ID: 22316010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency gains in tracer identification for nuclear imaging: can in vivo LC-MS/MS evaluation of small molecules screen for successful PET tracers?
    Joshi EM; Need A; Schaus J; Chen Z; Benesh D; Mitch C; Morton S; Raub TJ; Phebus L; Barth V
    ACS Chem Neurosci; 2014 Dec; 5(12):1154-63. PubMed ID: 25247893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorinated diaryl sulfides as serotonin transporter ligands: synthesis, structure-activity relationship study, and in vivo evaluation of fluorine-18-labeled compounds as PET imaging agents.
    Huang Y; Bae SA; Zhu Z; Guo N; Roth BL; Laruelle M
    J Med Chem; 2005 Apr; 48(7):2559-70. PubMed ID: 15801845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, in vivo occupancy, and radiolabeling of potent phosphodiesterase subtype-10 inhibitors as candidates for positron emission tomography imaging.
    Andrés JI; De Angelis M; Alcázar J; Iturrino L; Langlois X; Dedeurwaerdere S; Lenaerts I; Vanhoof G; Celen S; Bormans G
    J Med Chem; 2011 Aug; 54(16):5820-35. PubMed ID: 21777010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and evaluation of [¹⁸F]fluororasagiline, a novel positron emission tomography (PET) radioligand for monoamine oxidase B (MAO-B).
    Nag S; Lehmann L; Kettschau G; Heinrich T; Thiele A; Varrone A; Gulyas B; Halldin C
    Bioorg Med Chem; 2012 May; 20(9):3065-71. PubMed ID: 22436387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of 2-(2-(3-(4-([
    Mori W; Yamasaki T; Fujinaga M; Ogawa M; Zhang Y; Hatori A; Xie L; Kumata K; Wakizaka H; Kurihara Y; Ohkubo T; Nengaki N; Zhang MR
    J Med Chem; 2019 Jan; 62(2):688-698. PubMed ID: 30516998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational Design, Pharmacomodulation, and Synthesis of Dual 5-Hydroxytryptamine 7 (5-HT7)/5-Hydroxytryptamine 2A (5-HT2A) Receptor Antagonists and Evaluation by [(18)F]-PET Imaging in a Primate Brain.
    Deau E; Robin E; Voinea R; Percina N; Satała G; Finaru AL; Chartier A; Tamagnan G; Alagille D; Bojarski AJ; Morisset-Lopez S; Suzenet F; Guillaumet G
    J Med Chem; 2015 Oct; 58(20):8066-96. PubMed ID: 26348247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Reversible-Binding PET Ligands for Imaging Monoacylglycerol Lipase Based on the Piperazinyl Azetidine Scaffold.
    Rong J; Mori W; Xia X; Schafroth MA; Zhao C; Van RS; Yamasaki T; Chen J; Xiao Z; Haider A; Ogasawara D; Hiraishi A; Shao T; Zhang Y; Chen Z; Pang F; Hu K; Xie L; Fujinaga M; Kumata K; Gou Y; Fang Y; Gu S; Wei H; Bao L; Xu H; Collier TL; Shao Y; Carson RE; Cravatt BF; Wang L; Zhang MR; Liang SH
    J Med Chem; 2021 Oct; 64(19):14283-14298. PubMed ID: 34569803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syntheses and pharmacological characterization of novel thiazole derivatives as potential mGluR5 PET ligands.
    Baumann CA; Mu L; Wertli N; Krämer SD; Honer M; Schubiger PA; Ametamey SM
    Bioorg Med Chem; 2010 Aug; 18(16):6044-54. PubMed ID: 20634080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.