BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23651918)

  • 1. Determining optimal conditions to produce activated carbon from barley husks using single or dual optimization.
    Loredo-Cancino M; Soto-Regalado E; Cerino-Córdova FJ; García-Reyes RB; García-León AM; Garza-González MT
    J Environ Manage; 2013 Aug; 125():117-25. PubMed ID: 23651918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology.
    Sahu JN; Acharya J; Meikap BC
    Bioresour Technol; 2010 Mar; 101(6):1974-82. PubMed ID: 19913410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of activated carbons from wet activated sludge by direct chemical activation.
    Wang X; Zhu N; Xu J; Yin B
    Water Sci Technol; 2009; 59(12):2387-94. PubMed ID: 19542644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.
    Boudrahem F; Aissani-Benissad F; Aït-Amar H
    J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Textural development of sugar beet bagasse activated with ZnCl2.
    Onal Y; Akmil-Başar C; Sarici-Ozdemir C; Erdoğan S
    J Hazard Mater; 2007 Apr; 142(1-2):138-43. PubMed ID: 16982141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents.
    Oliveira LC; Pereira E; Guimaraes IR; Vallone A; Pereira M; Mesquita JP; Sapag K
    J Hazard Mater; 2009 Jun; 165(1-3):87-94. PubMed ID: 18996644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of activated carbons from cattle-manure compost by zinc chloride activation.
    Qian Q; Machida M; Tatsumoto H
    Bioresour Technol; 2007 Jan; 98(2):353-60. PubMed ID: 16527480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of microporous/mesoporous carbons prepared from rice husk under base- and acid-treated conditions.
    Liou TH; Wu SJ
    J Hazard Mater; 2009 Nov; 171(1-3):693-703. PubMed ID: 19595505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of activated carbons prepared from sugarcane bagasse by ZnCl2 activation.
    Tsai WT; Chang CY; Lin MC; Chien SF; Sun HF; Hsieh MF
    J Environ Sci Health B; 2001 May; 36(3):365-78. PubMed ID: 11411858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation.
    Kula I; Uğurlu M; Karaoğlu H; Celik A
    Bioresour Technol; 2008 Feb; 99(3):492-501. PubMed ID: 17350829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of malachite green on groundnut shell waste based powdered activated carbon.
    Malik R; Ramteke DS; Wate SR
    Waste Manag; 2007; 27(9):1129-38. PubMed ID: 17029775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Preparation and optimum process of walnut peel activated carbon by zinc chloride as activating agent].
    Liu XH; Wang XW; Zhao B; Lü JF; Kang NN; Zhang YJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3350-3. PubMed ID: 25881437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of date stones for production of activated carbon using phosphoric acid.
    Haimour NM; Emeish S
    Waste Manag; 2006; 26(6):651-60. PubMed ID: 16256326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse.
    Demiral H; Gündüzoğlu G
    Bioresour Technol; 2010 Mar; 101(6):1675-80. PubMed ID: 19854640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions.
    Lua AC; Yang T
    J Colloid Interface Sci; 2005 Oct; 290(2):505-13. PubMed ID: 16002081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process.
    Sahu JN; Acharya J; Meikap BC
    J Hazard Mater; 2009 Dec; 172(2-3):818-25. PubMed ID: 19748729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell.
    Zabihi M; Haghighi Asl A; Ahmadpour A
    J Hazard Mater; 2010 Feb; 174(1-3):251-6. PubMed ID: 19833433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of disperse dye from aqueous solution using waste-derived activated carbon: optimization study.
    Ahmad AA; Hameed BH; Ahmad AL
    J Hazard Mater; 2009 Oct; 170(2-3):612-9. PubMed ID: 19515487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step H3PO4 activation.
    Li K; Zheng Z; Li Y
    J Hazard Mater; 2010 Sep; 181(1-3):440-7. PubMed ID: 20542631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds.
    Bandosz TJ; Petit C
    J Colloid Interface Sci; 2009 Oct; 338(2):329-45. PubMed ID: 19615690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.