These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23651998)

  • 1. Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp.
    Arfi Y; Chevret D; Henrissat B; Berrin JG; Levasseur A; Record E
    Nat Commun; 2013; 4():1810. PubMed ID: 23651998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic Characterization of Lignocellulolytic Enzymes Secreted by the Insect-Associated Fungus
    Hori C; Song R; Matsumoto K; Matsumoto R; Minkoff BB; Oita S; Hara H; Takasuka TE
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32060026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the CAZy Repertoire from the Marine-Derived Fungus
    Ben Ali W; Navarro D; Kumar A; Drula E; Turbé-Doan A; Correia LO; Baumberger S; Bertrand E; Faulds CB; Henrissat B; Sciara G; Mechichi T; Record E
    Mar Drugs; 2020 Sep; 18(9):. PubMed ID: 32916905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels.
    Wu W; Davis RW; Tran-Gyamfi MB; Kuo A; LaButti K; Mihaltcheva S; Hundley H; Chovatia M; Lindquist E; Barry K; Grigoriev IV; Henrissat B; Gladden JM
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2603-2618. PubMed ID: 28078400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential production of lignocellulolytic enzymes by a white rot fungus Termitomyces sp. OE147 on cellulose and lactose.
    Bashir H; Gangwar R; Mishra S
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1290-9. PubMed ID: 26164778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De Novo Transcriptome Assembly, Functional Annotation, and Transcriptome Dynamics Analyses Reveal Stress Tolerance Genes in Mangrove Tree (
    Miryeganeh M; Saze H
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest.
    Hao JJ; Tian XJ; Song FQ; He XB; Zhang ZJ; Zhang P
    J Eukaryot Microbiol; 2006; 53(3):193-8. PubMed ID: 16677342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown.
    Levasseur A; Lomascolo A; Chabrol O; Ruiz-Dueñas FJ; Boukhris-Uzan E; Piumi F; Kües U; Ram AF; Murat C; Haon M; Benoit I; Arfi Y; Chevret D; Drula E; Kwon MJ; Gouret P; Lesage-Meessen L; Lombard V; Mariette J; Noirot C; Park J; Patyshakuliyeva A; Sigoillot JC; Wiebenga A; Wösten HA; Martin F; Coutinho PM; de Vries RP; Martínez AT; Klopp C; Pontarotti P; Henrissat B; Record E
    BMC Genomics; 2014 Jun; 15():486. PubMed ID: 24942338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases.
    Huang Y; Busk PK; Lange L
    Enzyme Microb Technol; 2015 Jun; 73-74():9-19. PubMed ID: 26002499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo transcriptome assembly and protein profiling of copper-induced lignocellulolytic fungus Ganoderma lucidum MDU-7 reveals genes involved in lignocellulose degradation and terpenoid biosynthetic pathways.
    Jain KK; Kumar A; Shankar A; Pandey D; Chaudhary B; Sharma KK
    Genomics; 2020 Jan; 112(1):184-198. PubMed ID: 30695716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose.
    Mahajan S; Master ER
    Appl Microbiol Biotechnol; 2010 May; 86(6):1903-14. PubMed ID: 20306191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the Lignocellulose-Degrading Enzyme System of
    Steindorff AS; Serra LA; Formighieri EF; de Faria FP; Poças-Fonseca MJ; de Almeida JRM
    Microbiol Spectr; 2021 Oct; 9(2):e0108821. PubMed ID: 34523973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The wood rot ascomycete Xylaria polymorpha produces a novel GH78 glycoside hydrolase that exhibits α-L-rhamnosidase and feruloyl esterase activities and releases hydroxycinnamic acids from lignocelluloses.
    Nghi do H; Bittner B; Kellner H; Jehmlich N; Ullrich R; Pecyna MJ; Nousiainen P; Sipilä J; Huong le M; Hofrichter M; Liers C
    Appl Environ Microbiol; 2012 Jul; 78(14):4893-901. PubMed ID: 22544251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era.
    Liu G; Qin Y; Li Z; Qu Y
    Biotechnol Adv; 2013 Nov; 31(6):962-75. PubMed ID: 23507038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of carbohydrate-active enzymes and sugar transporters in Penicillium echinulatum: A genome-wide comparative study of the fungal lignocellulolytic system.
    Lenz AR; Balbinot E; Souza de Oliveira N; Abreu FP; Casa PL; Camassola M; Perez-Rueda E; de Avila E Silva S; Dillon AJP
    Gene; 2022 May; 822():146345. PubMed ID: 35189252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea.
    Feng J; Wang J; Fan P; Jia W; Nie L; Jiang P; Chen X; Lv S; Wan L; Chang S; Li S; Li Y
    BMC Plant Biol; 2015 Feb; 15():63. PubMed ID: 25848810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the salinity adaptation mechanism in Penicilliopsis clavariiformis AP, a rare salt tolerant fungus from mangrove.
    Kashyap PL; Rai A; Singh R; Chakdar H; Kumar S; Srivastava AK
    J Basic Microbiol; 2016 Jul; 56(7):779-91. PubMed ID: 26663001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6.
    Patel I; Kracher D; Ma S; Garajova S; Haon M; Faulds CB; Berrin JG; Ludwig R; Record E
    Biotechnol Biofuels; 2016; 9():108. PubMed ID: 27213015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78.
    Martinez D; Larrondo LF; Putnam N; Gelpke MD; Huang K; Chapman J; Helfenbein KG; Ramaiya P; Detter JC; Larimer F; Coutinho PM; Henrissat B; Berka R; Cullen D; Rokhsar D
    Nat Biotechnol; 2004 Jun; 22(6):695-700. PubMed ID: 15122302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The first genome-level transcriptome of the wood-degrading fungus Phanerochaete chrysosporium grown on red oak.
    Sato S; Feltus FA; Iyer P; Tien M
    Curr Genet; 2009 Jun; 55(3):273-86. PubMed ID: 19396602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.