These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23652343)

  • 1. Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method.
    Bi L; Yang P
    J Biomed Opt; 2013 May; 18(5):55001. PubMed ID: 23652343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells.
    Gilev KV; Eremina E; Yurkin MA; Maltsev VP
    Opt Express; 2010 Mar; 18(6):5681-90. PubMed ID: 20389584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation.
    Yurkin MA; Semyanov KA; Tarasov PA; Chernyshev AV; Hoekstra AG; Maltsev VP
    Appl Opt; 2005 Sep; 44(25):5249-56. PubMed ID: 16149348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulations of light scattering by red blood cells.
    Karlsson A; He J; Swartling J; Andersson-Engels S
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):13-8. PubMed ID: 15651560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light scattering by multiple red blood cells.
    He J; Karlsson A; Swartling J; Andersson-Engels S
    J Opt Soc Am A Opt Image Sci Vis; 2004 Oct; 21(10):1953-61. PubMed ID: 15497423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of osmolarity on the optical properties of human erythrocytes.
    Friebel M; Helfmann J; Meinke MC
    J Biomed Opt; 2010; 15(5):055005. PubMed ID: 21054087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method.
    Lu JQ; Yang P; Hu XH
    J Biomed Opt; 2005; 10(2):024022. PubMed ID: 15910095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational study of scattering from healthy and diseased red blood cells.
    Ergül O; Arslan-Ergül A; Gürel L
    J Biomed Opt; 2010; 15(4):045004. PubMed ID: 20799799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers.
    Yurkin MA; Hoekstra AG; Brock RS; Lu JQ
    Opt Express; 2007 Dec; 15(26):17902-11. PubMed ID: 19551085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of deformation of human red blood cells in flow cytometry: measurement and simulation of bimodal forward scatter distributions.
    Gienger J; Gross H; Ost V; Bär M; Neukammer J
    Biomed Opt Express; 2019 Sep; 10(9):4531-4550. PubMed ID: 31565508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static and dynamic light scattering by red blood cells: A numerical study.
    Mauer J; Peltomäki M; Poblete S; Gompper G; Fedosov DA
    PLoS One; 2017; 12(5):e0176799. PubMed ID: 28472125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refractive index of human red blood cells between 290 nm and 1100 nm determined by optical extinction measurements.
    Gienger J; Smuda K; Müller R; Bär M; Neukammer J
    Sci Rep; 2019 Mar; 9(1):4623. PubMed ID: 30874567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective phase function for light scattered by blood.
    Turcu I
    Appl Opt; 2006 Feb; 45(4):639-47. PubMed ID: 16485674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulations of deformation and aggregation of red blood cells in shear flow.
    Low HT; Ju M; Sui Y; Nazir T; Namgung B; Kim S
    Crit Rev Biomed Eng; 2013; 41(4-5):425-34. PubMed ID: 24941417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical clustering of red blood cells in capillary vessels.
    Boryczko K; Dzwinel W; Yuen DA
    J Mol Model; 2003 Feb; 9(1):16-33. PubMed ID: 12638008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers.
    Yu L; Sheng Y; Chiou A
    Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of osmolality and solutes on the morphology of red blood cells according to three-dimensional refractive index tomography.
    Son M; Lee YS; Lee MJ; Park Y; Bae HR; Lee SY; Shin MG; Yang S
    PLoS One; 2021; 16(12):e0262106. PubMed ID: 34972199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additivity of light-scattering patterns of aggregated biological particles.
    Moskalensky AE; Strokotov DI; Chernyshev AV; Maltsev VP; Yurkin MA
    J Biomed Opt; 2014 Aug; 19(8):085004. PubMed ID: 25104406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.