These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23652436)

  • 21. [Reinnervation of a mixed muscle in the frog Rana temporaria with a regenerating homogeneous nerve].
    Radziukevich TL
    Zh Evol Biokhim Fiziol; 1995; 31(4):467-74. PubMed ID: 8779287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA.
    Pape PC; Jong DS; Chandler WK
    J Gen Physiol; 1995 Aug; 106(2):259-336. PubMed ID: 8537818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The contractile properties of the frog muscle fiber in the intact and the skinned states].
    Sobol' KV; Nasledov GA
    Fiziol Zh Im I M Sechenova; 1992 Dec; 78(12):101-8. PubMed ID: 1306744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caffeine-evoked contractures in single slow (tonic) muscle fibres of the frog (Rana temporaria and R. esculenta).
    Hoock C; Steinmetz J; Schmidt H
    Pflugers Arch; 1996 Jun; 432(2):207-14. PubMed ID: 8662296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of transverse-tubular chloride conductance on excitability in skinned skeletal muscle fibres of rat and toad.
    Coonan JR; Lamb GD
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):551-64. PubMed ID: 9575303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A study of excitation-contraction coupling in frog tonic muscle fibers of Rana temporaria.
    Nasledov GA; Mandelstam JE; Radzjukewich TL
    Experientia; 1972 Nov; 28(11):1305-6. PubMed ID: 4539185
    [No Abstract]   [Full Text] [Related]  

  • 27. Changes in the maximum speed of shortening of frog muscle fibres early in a tetanic contraction and during relaxation.
    Josephson RK; Edman KA
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):511-25. PubMed ID: 9518709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. There is no experimental evidence for non-linear myofilament elasticity in skeletal muscle.
    Reconditi M
    J Exp Biol; 2010 Feb; 213(4):658-9; author reply 659. PubMed ID: 20118317
    [No Abstract]   [Full Text] [Related]  

  • 29. [Morphofunctional characteristics of myotomic muscle fibers in the tail of the Rana temporaria tadpole].
    Lebedinskaia II; Radziukevich TL; Nasledov GA
    Zh Evol Biokhim Fiziol; 1989; 25(3):330-6. PubMed ID: 2788969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Charge movement in cut twitch fibres of Rana temporaria containing 0.1 mM EGTA.
    Hui CS; Chen W
    J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):563-70. PubMed ID: 9379411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of pimobendan, a new cardiotonic agent, on contractile responses in single skeletal muscle fibres of the frog.
    Wakisaka C; Kitamura N; Ohta T; Kai T; Nakazato Y; Ito S
    Fundam Clin Pharmacol; 2000; 14(4):379-85. PubMed ID: 11030445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrastructural changes accompanying development of fatigue in frog twitch skeletal muscle fibres.
    Lipska E; Novotova M; Radzyukevich T; Zahradnik I
    Endocr Regul; 2005 Jun; 39(2):43-52. PubMed ID: 16229154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Evaluation of the calcium sensitivity of the skinned smooth muscle of the subclavian vein in the frog Rana temporaria].
    Sysoev VV; Sobol' KV
    Zh Evol Biokhim Fiziol; 1987; 23(4):560-1. PubMed ID: 3499727
    [No Abstract]   [Full Text] [Related]  

  • 34. Non cross-bridge stiffness in skeletal muscle fibres at rest and during activity.
    Bagni MA; Colombini B; Colomo F; Berlinguer Palmini R; Cecchi G
    Adv Exp Med Biol; 2005; 565():141-54; discussion 155, 371-7. PubMed ID: 16106972
    [No Abstract]   [Full Text] [Related]  

  • 35. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres.
    Vandenboom R; Claflin DR; Julian FJ
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):171-80. PubMed ID: 9679172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The refractory period and the duration of the plateau of the active state in frog skeletal muscle.
    Clinch NF; Tennant V
    Can J Physiol Pharmacol; 1973 Dec; 51(12):966-75. PubMed ID: 4544240
    [No Abstract]   [Full Text] [Related]  

  • 37. The effect of temperature on the contractile response of cardiac muscle from two frog species, Rana temporaria and Xenopus laevis, at two different calcium concentrations-I. At pH 7.7.
    Lagerstrand G
    Comp Biochem Physiol A Comp Physiol; 1982; 73(3):463-8. PubMed ID: 6128130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of Ca2+ sparks by Ca2+ and Mg2+ in mammalian and amphibian muscle. An RyR isoform-specific role in excitation-contraction coupling?
    Zhou J; Launikonis BS; RĂ­os E; Brum G
    J Gen Physiol; 2004 Oct; 124(4):409-28. PubMed ID: 15452201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Steady state relation between cytoplasmic free Ca2+ concentration and force in intact frog skeletal muscle fibers.
    Konishi M; Watanabe M
    J Gen Physiol; 1998 Apr; 111(4):505-19. PubMed ID: 9524135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of BAPTA on force and Ca2+ transient during isometric contraction of frog muscle fibers.
    Sun Y; Caputo C; Edman KA
    Am J Physiol; 1998 Aug; 275(2):C375-81. PubMed ID: 9688591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.